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ABSTRACT. We develop a level set method for the computation of mul-
tivalued physical observables (density, velocity, etc.) for the semiclas-
sical limit of the Schrödinger equation in arbitrary number of space di-
mensions. The main idea is to evolve the density near an n-dimensional
manifold that is identified as the common zeros of n level set functions
in phase space. These level set functions are generated from solving the
Liouville equation with initial data chosen to embed the phase gradient.
Simultaneously we track a new quantity f by solving again the Liouville
equation near the obtained zero level set but with initial density as initial
data. The multivalued density and higher moments are thus resolved by
integrating f along the n-dimensional manifold in the phase directions.
It turns out that our method provides a geometrical ansatz for the limiting
Wigner equation since the aforementioned function, f , multiplied by a
Dirac-δ function applied to the level set function φ, solves the same equa-
tion as that for the distribution density function exploited in the Wigner
approach. The main advantages of this new approach, in contrast to the
standard kinetic equation approach using the Liouville equation with a
Dirac measure initial data, include: 1) the Liouville equations are solved
with L∞ initial data, and a singular integral involving the Dirac-δ func-
tion is evaluated only in the post-processing step, thus avoiding oscilla-
tions and excessive numerical smearing; 2) a local level set method can
be utilized to significantly reduce the computation in the phase space.
These advantages allow us to compute, for the first time, all physical
observables for multidimensional problems.
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1. INTRODUCTION

In this paper we are concerned with numerical computation of the (mul-
tivalued) physical observables to the linear Schrödinger equation

(1.1) iε∂tψε = −ε2

2
∆ψε +V (x)ψε, x ∈ R

n,

subject to highly oscillatory wave function as initial data

(1.2) ψ(x,0) = A0(x)exp(iS0(x)/ε).

Here V is a given smooth potential, ε is the rescaled Planck constant. In
the semiclassical regime, ε � 1, the function ψε has O(ε) wave length,
and its associated physical observables become highly oscillatory. Direct
numerical simulations of the Schrödinger equation become prohibitively
costly since one needs to resolve the oscillations [1, 20]. A natural way to
remedy this problem is to use the asymptotic solution, which is the limit of
the solution to the Schrödinger equation as ε → 0. The classical approach is
the WKB (Wentzel-Kramers-Brillouin) method, which uses the following
ansatz

(1.3) ψ(x, t) = A(x, t)exp(iS(x, t)/ε).

With this decomposition, the leading order behavior is characterized by two
quantities, the phase function S which satisfies the nonlinear eikonal equa-
tion, and the amplitude function A which satisfies a transport equation, i.e.,

∂tS +
|∇xS|2

2
+V (x) = 0,(1.4)

∂t |A|2 +∇x · (|A|2∇xS) = 0.(1.5)

Since the unknowns in this lowest order WKB system, i.e. the phase and the
amplitude, are independent of the small scale, they are, in principle, easier
to compute numerically.

However, a well-known drawback of this approach is the lack of a super-
position principle when the linear equation (1.1) is replaced by nonlinear
ones (1.4)-(1.5). The solution of a nonlinear eikonal equation, in general,
develops singularities in finite time. Viscosity solutions were introduced
in [6] to mathematically select a unique, single valued weak solution. Un-
fortunately, this class of weak solutions is not appropriate in treating linear
wave propagation problems. Instead, multivalued solutions that are deter-
mined by the stationary phases and the corresponding to crossing waves, are
the physically relavant ones. Constructing such multivalued solutions is the
subject of study in this paper. Our goal is to develop an efficient numerical
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method capable of computing the multivalued quadratic physical observ-
ables, including position density and velocity. An essential ingredient in
our approach is the level set function.

Let u = ∇xS denote the phase gradient. Then for smooth solutions, the
gradient of the eikonal equation (1.4) satisfies the forced Burgers’ equation

(1.6) ∂ru+u ·∇xu+∇xV = 0 .

This equation, coupled with the transport equation (1.5), yield the pressure-
less gas equation for density ρ = |A|2 and velocity u:

∂tρ+∇x · (ρu) = 0,(1.7)

∂tρu+∇x(ρuu)+ρ∇xV (x) = 0.(1.8)

Thus we shall refer the quantity u = ∇xS as either the phase gradient or the
velocity.

A level set method was introduced in [4, 16] to compute the multival-
ued solution to the forced Burgers’ equation (1.6), and more generally, the
multivalued solution of general quasilinear PDEs. In this method, the ve-
locity u is embedded into an n-dimensional manifold, which corresponds to
the intersection of n zero level set functions, each satisfying the Liouville
equation

(1.9) ∂tφ+ p ·∇xφ−∇xV ·∇pφ = 0.

In general, equation (1.4) is not homogeneous of degree one in the gradient,
and consequently, the phase value S is not a constant along the characteris-
tics. Therefore, if one is interested in the values of S, simply solving (1.9) is
not enough. To compute the multivalued phase S, satisfying the Hamilton-
Jacobi equation

(1.10) ∂tS +H(x,∇xS) = 0, x ∈ R
n,

which includes (1.4) with H(x, p) = |p|2/2 +V (x), the authors in [4] sug-
gest solving an additional level set function in the augmented space (x, p,z)
with z = S(t,x).

This is the context of our present paper. We are interested in comput-
ing the density and other quadratic physical observables, in addition to the
multivalued velocity and phase, in the level set framework. In particular,
given the multivalued velocity, we need to solve the continuity equation
(1.7), which is a linear transport equation with discontinuous and multi-
valued (!) coefficient. Clearly, at points where physical solutions for the
velocity are multivalued, the corresponding density will also become mul-
tivalued. Moreover, the density may become unbounded at the boundaries
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of each single valued branch of the multivalued solution. This is a phenom-
enon that arises in the modeling of sticky particles (by the pressureless gas
equations) that is related to the formation of large scale structures in the
universe [32].

We sketch our main idea using the one dimensional Schrödinger equation
as an example. We use a level set function φ in the phase space, (x, p) ∈ R

2

with p = u, to track the bicharacteristics. As shown in [4, 16], the scalar
level set function φ(t,x, p) satisfies a linear Liouville equation

(1.11) ∂tφ+ pφx −Vxφp = 0.

The zero level set of this function, initiated as p− ∂xS0(x), forms a one-
dimensional manifold in (x, p) space. We need to perform integration along
this manifold to obtained the physical observables.

We show that the WKB system (1.4)-(1.5) can be rewritten in phase space
as

∂tS + p∂xS−∂xV ∂pS = p2/2−V (x),(1.12)

∂tρ+ p∂xρ−∂xV∂pρ = ρ
∂xφ
∂pφ

.(1.13)

As we mentioned earlier, one strategy to resolve S is to look at the graph
of the function z = S(x, t) in the whole domain and project the phase value
onto the manifold {φ = 0}, see[4]. In this work, we propose to track the
new quantity

f (t,x, p) := ρ(t,x, p)|∂pφ|,
for density calculations, and show that this new quantity f satisfies the Li-
ouville equation

∂t f + p∂x f −∂xV ∂p f = 0, f (0,x, p) = ρ0(x).

I.e. the concentration singularities in ρ are canceled out by the zeros of
∂pφ! This is one of the main results in the paper, and seems new to the best
of our knowledge.

The combination of the level set function φ and the function f enables
us to compute the desired physical observables, for example density and
velocity, via integrations against a delta function concentrating on the zero
of the level set function:

ρ̄(x, t) =
Z

f (t,x, p)δ(φ)dp,(1.14)

ū(x, t) =

Z

p f (t,x, p)δ(φ)dp/ρ̄.(1.15)
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We point out that our proposed approach recovers that by the Wigner
transform. By defining the distribution density

η(x, p, t) := f (x, p, t)δ(φ),

we can show that η satisfies the following Liouville

∂tη+ pηx −Vxηp = 0, η(0,x, p) = ρ0(x)δ(p−u0(x)).(1.16)

This is the same equation (and initial condition) as that which can be de-
rived from the semiclassical limit of the Schrödinger equation (1.1) with
initial data (1.2) by using the Wigner distribution, where η is the density
distribution of the limit of the Wigner function as ε → 0 [10, 11, 18].

Of course, one can directly solve (1.16) to obtain the physical observ-
ables by taking moments (integrating with respect to p). This was done
for the Vlasov-Poisson systems in [17]. There are two numerical disad-
vantages with this approaches. First, the equation, defined in the phase
space, demands prohibitive amount of computer memory due to high di-
mensionality. Second, even without the high dimensionality problem, one
still needs to numerically approximate the delta function. In fact, given the
initial value for η in (1.16), the density contains one delta function (for a
single valued solution) or superposition of several delta functions in p, see
[15, 26]. Numerically, a "regularized" function has to be used to approx-
imate this type of distributional initial data. It is then foreseable that this
regularized functions with “narrow spikes” is likely to be smeared out by
the numerical viscosity of the shock capturing methods used to solve the
Liouville equation.

Previous attempts to avoid the difficulties arising in the high dimension
problem focused on moment methods. There are two techniques available
in the literature. One way is to obtain the closure system based on Dirac
delta-type initial data. see [3, 7, 13, 15]. The other approach, proposed
by Brenier and Corrias [2], is based on (1.16), and the system arised from
(1.16) is closed using Heaviside-type initial data, see [7, 8, 12]. Moment
methods require careful numerical solutions to weakly hyperbolic systems,
and become difficult, if not impossible, when the number of phases is large,
and in higher space dimensions.

In the level set framework, the high dimensionality that comes from
working in the phase space can be compensated by the local level set ap-
proach in the same manner as in e.g., [4, 5, 22, 24]. If one uses this ap-
proach, the total computational complexity reduces to that comparable to
a computation in the physical space. In comparison, the corresponding lo-
calized algorithm for solving (1.16) has not been reported. In constrast to
tracking singular data in the direct methods for (1.16), our new level set
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methods solve the Liouville equations for φ and f respectively with L∞ ini-
tial data. Due to linearity of the Liouville equation, φ and f remain as
smooth as their initial values. We do not approximate the delta function
until ρ̄ or other higher moments are evaluated. This approach significantly
enhances the quality of the numerical solutions when compared to a direct
Liouville solver based on (1.16). In the other words, the approach proposed
in this paper provides a more efficient and accurate numerical methods for
(1.16) than numerically solving (1.16) directly (this will be demonstrated
numerically in Section 3). Finally, when compared to the moment methods,
our method automatically computes all the multivalued phases using a set
of linear convection equations (The Liouville equations), and is thus much
more robust.

This paper is organized as follows. Section 2 is devoted to a derivation
of the equation for the new quantity f as well as the justification of the in-
tegration procedure. In Section 3 we discussed our numerical procedures
for computing multivalued density and the momentum and present some
numerical results. In particular, we discuss the strategies on evaluating sin-
gular integrals (1.14) and (1.15). Finally, we give an alternative justification
of our new level set method in the Appendix.

2. LEVEL SET EQUATIONS FOR MULTIVALUED PHYSICAL

OBSERVABLES IN THE PHASE SPACE

In essence, the first part of our method consists of tracking the bichar-
acteristics of (1.4) or (1.6) in the phase space, using the level set method
developed in [4, 16]. The bicharacteristics for the phase equation (1.4), or
(1.6), are governed by the Hamiltonian system

dx
dt

= p, x(0) = α,(2.1)

dp
dt

= −∇xV (x), p(0) = ∇xS0(x) ≡ u0(x)(2.2)

In this section we first review our previous level set equations for multi-
valued velocity and phases, and then develop a new method for computing
multivalued density and other physical observables that are higher order
moments of the solution of the Liouville equation (1.16).

2.1. Multivalued velocity and phase. As we mentioned in the introduc-
tion, the multivalued phase gradient or velocity may be implicitly realized
as the zero vector level set of the function φ(t,x, p) ∈ R

n, satisfying the
Liouville equation

(2.3) ∂tφ+ p ·∇xφ−∇xV ·∇pφ = 0,
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subject to initial data φ(0,x, p) = p−∇xS0(x) or its smooth approximation.
Such a zero level set represents a n-dimensional manifold in phase space
(x, p) ∈ R

n and gives implicitly the multivalued phase gradient; i.e.

φ(t,x, p) = 0, p = ∇xS.

Note that each level set function φ is an L∞ function in a bounded domain if
the initial velocity u0 is bounded.

The phase S can not be obtained from solving the Liouville equation (2.3)
since S is not preserved along the Hamilton dynamics. Instead in the phase
space (x, p) the phase solves a forced transport equation

∂tS + p ·∇xS−∇xV ·∇pS =
|p|2

2
−V (x).(2.4)

In [4] the authors solve this linear transport equation and then project the
obtained phase value onto the n-dimensional manifold φ = 0, and thus re-
solve the multivalued phase in the physical space. Consult [4, 19] for further
details.

2.2. Multivalued density. Similar to (2.4), we obtain the evolution equa-
tion for density in the phase space

∂tρ+ p ·∇xρ−∇xV ·∇pρ = ρG,(2.5)

where G, evaluated as −∆xS, can be expressed as

G = Tr((∇pφ)−1∇xφ).

Let Q := ∇pφ(t,x, p), we differentiate and obtain

∇xφ+∇pφ ·D2S = 0,

where D2S denotes the Hessian of S. This leads to

D2S = −Q−1∇xφ.

Therefore in (x, p) space the density satisfies

(2.6) ∂tρ+ p ·∇xρ−∇xV ·∇pρ = ρTr(Q−1∇xφ)

where we have used the fact ∆S = Tr(D2S) = −Tr(Q−1∇xφ). Here the
density satisfies a linear homogeneous equation in the phase space, and thus
the superposition principle holds and the multivaluedness is “unfolded” in
(x, p) space.

One may solve the above density equation coupled with the Liouville
equation (2.3) and then restrict onto the n-dimensional manifold φ = 0.
However this seems unrealistic since the new difficulty is at points where Q
degenerates (det(Q) = 0). The density may become unbounded.
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Our new idea to resolve the multivalued density in the physical space is
to filter its value in phase space (x, p) onto the manifold φ = 0, i.e., for any
x we compute

ρ̄(x, t) =
Z

ρ(t,x, p)J(t,x, p)δ(φ)dp,

where
J := |det(∇pφ)| = |det(Q)|.

In other words if we define a distribution function as

η(t,x, p) := ρ(t,x, p)J(t,x, p)δ(φ),

then we compute

(2.7)
Z

Rn
η(t,x, p)dp.

The above ansatz suggests that we just need to compute a new quantity

(2.8) f (t,x, p) := ρ(t,x, p)J(t,x, p),

which actually solves the Liouville equation

(2.9) ∂t f + p ·∇x f −∇xV ·∇p f = 0,

subject to the initial condition

f0 = ρ0(x)J0(x, p),

where J0 = 1 if φ0 = p−∇xS0 is smooth, and J0 = |det(Q0(x,y))| for φ0
chosen otherwise. With this new quantity the singularities in density ρ are
canceled out by the zeros of J(φ)! This is one of the main results in this
paper.

We now turn to justify the claim (2.9). Note that equation (2.9) is linear
and homogeneous, therefore it suffices to show (2.9) for (2.8) with J =
det(Q). By taking the gradient of (2.3) with respect to p we obtain the
following equation for Q = ∇pφ

∂tQ+ p ·∇xQ−∇xV ·∇pQ = −∇xφ.

Multiplying this equation by Q−1 on the left and taking the trace of the
resulting equation we obtain

(2.10) ∂tJ + p ·∇xJ −∇xV ·∇pJ = −JTr(Q−1∇xφ),

where we have used the fact that for J = det(Q) the following holds:

(2.11) {∂t ,∇x,p}J = JTr(Q−1{∂t ,∇x,p}Q).

Therefore J × (2.6)+ ρ× (2.10) gives the equation for f = ρJ as claimed
in (2.9).

According to a classical matrix decomposition in linear algebra, the real
matrix Q can be decomposed into a product Q = PR of an orthogonal matrix
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P and an upper triangular matrix R. We thus have J = det(Q) = det(R) since
PT ·P = I. Also we have

Q−1∂tQ = R−1∂tR+R−1PT ∂tPR,

which gives Tr(Q−1∂tQ) = Tr(R−1∂tR) since

Tr(R−1PT ∂tPR) = Tr(PT ∂tP) =
1
2

Tr(PT ∂tP+∂tP
T P) = 0.

It suffices to prove (2.11) for upper-triangular matrix R, i.e.,

J−1{∂t ,∇x,p}J = Tr(R−1{∂t ,∇x,p}R) =
n

∑
k=1

{∂t ,∇x,p}R(k,k)/R(k,k),

which can be readily verified via a direct calculation.
Finally, let us go back and take a closer look at the distribution function

η. Since both φ and f solve the Liouville equation, so does δ(φ) and the
product η = f δ(φ). For smooth initial velocity the density distribution η
evolves according to

∂tη+ p ·∇xη−∇xV ·∇pη = 0,(2.12)

η(0,x, p) = ρ0(x)δ(p−u0(x)).(2.13)

This recovers the semiclassical limit of the Schrödinger equation (1.1) with
initial data (1.2), as ε → 0, obtained via the Wigner distribution. Thus our
approach provides an alternative numerical method for (2.12) that produces
higher quality results. A comparison between these two approaches will be
carried out in the next section.

To recover the physical observables we just need to take moments. For
examples, the first two moments give the density and flux:

ρ̄ =

Z

ηdp, ρu =

Z

pηdp.

The density evaluated this way is the same as that obtained from formula
(2.7). Higher moments can be defined in the fashion by using η.

3. NUMERICAL IMPLEMENTATION AND RESULTS

In this section we will discuss the numerical procedures of the new level
set method, and present several numerical examples. For clarity in presen-
tation involving grid indices, we shall use Φ to denote the vector valued
level set function that is previously denoted as φ.
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3.1. Numerical procedure. Let us summarize the exposition above by
enumerating the numerical procedures needed for computing the density
ρ̄ and higher moment physical observables.

(1) Initialize: construct the level set functions Φ0 = (φ(0)
i ) that embed

the initial data S0, ∇xS0, and the phase space density function f0
defined by (2.8) from ρ0 in phase space.

(2) Evolve the Liouville equation in phase space using φ(0)
i and f0 con-

structed above as initial conditions:

wt + p ·∇xw−∇xV ·∇pw = 0,

with w(x, p, t = 0) = φ(0)
i , i = 1, · · · ,d, and f0 respectively.

(3) Evaluate ρ̄ and other higher moments of f . The total density is
obtained by integration of f along {p ∈ R

d : Φ(x, p) = 0} :

ρ̄(x) =
Z

Rd
f (x, p, t)δ(Φ(x, p))dp,

and the momentum is determined by

ρu(x) =

Z

Rd
p f (x, p)δ(Φ(x, p))dp,

where δ(Φ) := ∏n
i=1 δ(φi) with φi being the ith component of Φ. The

averaged velocity may be obtained as ρu/ρ̄. If higher moments are
needed, we just evaluate similar integrals with the corresponding
higher powers of p.

For completeness, we describe the numerical procedures needed to evolve
the Liouville equations (Steps 1 and 2). The readers can find more detailed
presentations in [22] and [4] for Step 2. We leave the discussion of Step
3 to the next subsection. Also, we shall focus our discussion on the case
of using a uniform Eulerian grid over Ω = Ωx × Ωp ⊂ R

d. For d = 2 or
4, it is possible to perform computations on a uniform grid as described
using desktop PCs, and this is what we did in order to obtain our results.
However, our algorithm is valid for any d = 2k, k ∈ N. Indeed, for d ≥ 4,
some localized algorithms should be adopted, and we will comment on this
aspect at the end of this subsection.

Step 1. We need to embed the initial data as the kernel of suitable level
set functions in R

2d . If ∇xS0 is continuous, we construct each component
of Φ by

φi(x, p,0) = pi −∂xiS0(x,0), i = 1, · · · ,d,

where pi,xi ∈ R are the components of p = (pi) ∈ R
d , x = (xi) ∈ R

d. The
kernel of Φ or the intersection of the zero level sets of φi determines the
desired d-dimensional manifold. Otherwise we take φi(x, p,0) = di(x, p)
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where di(x, p) denotes the signed distance function to the manifold pi =
∇xiS0(x), component-wise, as suggested in [31].

Step 2. To solve the Liouville equation

φt + p ·∇xφ−∇xV ·∇pφ = 0,

we discretize the gradients ∇xφ and ∇pφ by upwinding with a fifth order
WENO approximation [14]. We then discretize time by either the 3rd order
TVD Runge-Kutta scheme of [25] or 4th order SSP Runge-Kutta scheme
of [27]. At the boundary of our computational domain, we use a Neumann
boundary condition. The corresponding CFL condition for the Liouville
equations is:

∆t ≤ ∆x
2max(x,p)∈Ω(p,∇xV )

.

Before we can actually evolve the system numerically, we need to de-
termine the computational domain for the problem. It is clear that we are
flowing a Hamiltonian system, and thus the total energy H(x(t), p(t)) is in-
variant under the flow. More precisely, for t ≥ 0, (x(t), p(t)) stays on the
invariant manifold M0, which is the H0 level set of the Hamiltonian H de-
termined by the initial data (x0, p0). Furthermore, by definition, M0 is a
closed submanifold in the phase space (in this paper, we consider either R

2

or R
4). Hence, the range of (x, p) is determined by the given initial data and

the Hamiltonian.
Let us illustrate this by an example in R

2 with the inhomogeneous Hamil-
tonian H(x, p) = (p2 +x2)/2. With the initial data (x0, p0) = (

√
2,
√

2), the
invariant manifold M√

2 is the two-level set of H, corresponding to the cir-
cle with radius two, centered at the origin. Therefore, the possible range of
p for this system is bounded by the extrema of p constraint on the circle;
in this example it is [−2,2]. Correspondingly, we can determine the range
of x. Of course, for our problem, we generally evaluate a system of such
flows determined by (x,∂xS0(x)), with x ∈ Ωx and Ωx compact. We then
determine the range of (x, p) needed for computation by obtaining bounds
determined from each energy level set Mx, x ∈ Ωx.

For efficiency in computation, one can perform Steps 1-3 locally in an
open neighborhood around the zero level sets. Indeed, in [22], the authors
demonstrated this approach by adopting the local level set technique intro-
duced in [23]. It is also possible to use a so-called semi Lagrangian method
to localize the computation, see [28, 29] for codimension one calculations.
However, there are extra numerical considerations on how the zero level
sets of φi should intersect. In [22] and [4], the authors discussed the strat-
egy of combining distance reinitialization (making each φi to be the signed
distance function to its zero level set) and enforcing orthogonality in the
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FIGURE 3.1. Comparison of the density computed from
evolving the delta function initial data (dotted curve) and the
proposed level set approach (solid curve). These are numer-
ical solutions to the problem described in Example 3.2.

pair-wise intersection of the zero level sets of φi. We refer the detailed dis-
cussion to those two papers. We point out, however, that this strategy will
affect the evaluation of the density integral. The changes in the gradients
of φi resulting from these operations require recomputations of f . We will
discuss more details related to this in a future paper.

We remark that it is also possible to obtain the physical observables by
evolving a single Liouville equation with the initial condition containing
δ-functions.

ηt + p ·∇xη−∇xV ·∇pη = 0,

with
η(x, p, t = 0) = ρ0(x)δ(p−∇xS0).

However, this approach is not appropriate as a numerical device, since nu-
merical viscosity would smear out the δ function and degenerate the accu-
racy at the integration needed for total density computation. In addition,
the corresponding methods for local computations have not been exten-
sively studied. Figure 3.1 shows a comparison of such approach to our
level set approach. The computation of the Liouville equation is done as
we suggested above, using upwinding and the 5th order WENO spatial dis-
cretization. With exactly the same grid, one sees in the figure that the result
obtained from tracking the δ initial data is inferior to the level set result.

Finally, we point out a valuable tool developed in [21] for explicit ap-
proximation of the phase gradient location from the given level set function
Φ and for visualization. The same author is currently developing a high
codimension semi-Lagragian method which looks quite promising.
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3.2. On numerical integration of the moments. In the evaluation of the
density integral

(3.1) ρ̄(x, t) =
Z

Rd
f (x, p)Π jδ(φ j(x, p))dp,

typically, one replaces the Dirac-δ distribution by an approximation δη,
such that δη ⇀ δ as η −→ 0+. Common choices of δη range from a nor-
malized Gaussian to compactly supported kernels with 2η > 0 denoting the
support size. Integral (3.1) is then approximated by a Riemann sum over a
uniform grid with mesh size h. For example, for d = 2, we have:

ρ̄h,η(x, t) = ∑
i, j

h2 f (x, pi, j, t)δη(φ1(x, pi, j, t))δη(φ2(x, pi, j, t));

here ρ̄ is a function of two spatial dimensions. One concludes that

ρ̄ = lim
η→0+

lim
h→0+

ρ̄h,η,

if the limits are evaluated in the order as above. However, in actual numer-
ical computation, it is important to compute convergent approximations of
(3.1) as h → 0 efficiently and with good quality for a given range of grid
sizes, i.e. small error relative to the grid size. A common practice is to put
the amount of regularization η, here corresponding to the support size, as a
function of h such that η(h) → 0+ as h → 0+. However, it is not obvious
that ρh = ρh,η(h) converges to ρ̄. In our study, we found that it is essential
to sample δη correctly over the grid. This amounts to the correct selection
of the kernel δη and the regularization parameter η in relation to both the
given grid geometry, and the gradient of the level set functions.

We will use the simple piecewise linear kernel

δ(1)
η (x) =

{

1
η(1− |x|

η ), | x
η | ≤ 1

0, | x
η | > 1

to illustrate our reasoning. First, the delta function needs to be resolved by
the grid. Let x j = jh denote the grid points. If we choose an η0(h) smaller

than the grid size, it is obvious that δ(1)
η0(h) is equivalent to 0 on the grid,

regardless of the grid size. Thus η(h) ≥ h. Since the integrals of interest
in this paper involve the composition of δ-function and a level set function,
we need to study the scaling of the regularization under this composition.
Let φ(x) be the one dimensional level set function: φ(x) = px, p > 0. Let
z j = φ(x j) = p · jh. We immediately realize that η(h) has to be greater
than ph in order for the discretization to take effect; i.e. the amount of
regularization should be an increasing function of the gradient of the level
set function! We remark that some of the related aspects are extensively
studied in the papers [30], and in particular, related to level set methods
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in [9]. Their results suggest that special techniques are needed in order to
avoid grid effects that result in O(1) error regardless of grid refinement. It
is pointed out in [30] that if η is chosen to be positive integer multiple of h,

κ0h, then δ(1)
η (x) as well as the cosine kernel

δ(2)
η (x) =

{

1
2η(1+ cos |πx|

η ), | x
η | ≤ 1

0, | x
η | > 1

have the so-called “exact integration property”, meaning

N

∑
j=−N

δ(k)
κ0h(x j − x0)h = 1, for any −Nh < x0 < Nh, k = 1,2.

In our simulations, we use δ(2)
η (x) and scale η with |φp| by

η(h, |φp|) = 2max(|φp|,1) ·h.

Here, |φp| denotes the Jacobian of Φ = (φ j) with respect to p:

|∂Φ/∂(p1, · · · , pd)|,

and is approximated by central differencing. Figure 3.2 is a comparison
using additional scaling factors. In higher dimensions (d ≥ 2), [9] sug-
gests the possibility of subtle complications related to the grid effects. This
means that the regularization parameter η should also depends on ∇x,pφ j,
j = 1, · · · ,d. In our computations, we either use the same scaling as de-
scribed above or perform distance reinitializations together with orthogo-
nality adjustments on φ j, as suggested in [4, 22], and recompute f due to
the change in |∂Φ/∂(p1, · · · , pd)| and finally scale η as suggested. We shall
present more study of various related aspects in a forthcoming paper.

We remark that not all approximate delta functions satisfy the exact in-

tegration property. Moreover, even if the kernel is chosen to be either δ(1)
η ,

δ(2)
η , or one with many vanishing moments, if η is chosen carelessly, one

typically will get a small error that does not vanish as h → 0. Our expe-
rience suggests that, in general, the scaling similar to η(h) =

√
h should

be used for convergence. To see this, consider the periodic extension of
f (x)δη(x), where δ(x) is supported in [−1,1] and δη(x) = δ(x/η)/η. Fur-
thermore, let S =

R

R
f (x)δ(x)dx = f (0), Iη =

R

[−η,η] f (x)δη(x)dx and Sh be
the corresponding Riemann sum with mesh size h. We see that the error can
be formally bounded by

|Sh−S | ≤ |Sh − Iη|+ |Iη−S |.
14



Now consider the consine kernel, δ(2)
η , and assume that f is a smooth func-

tion. Then we know that the periodic extension of f (x)δ(2)
η (x) is a C2 func-

tion on R, and thus the quadrature error is bounded by

|Sh − Iη| ≤ C0η · d2

dx2 ( f (x)δ(2)
η (x)) ≤ C̃0

h2

η2 .

Since δ(2)
η has one vanishing moment, |Iη−S | ≤C1η2. Hence, by choosing

η =
√

h, the optimal error bound

|Sh −S | ≤ h

is achieved. The scaling of this kind raises the question about the quality
of solution for real computations. Clearly, the

√
h-scaling on the support

size implies excessive smearing with respect to the given grid configura-
tion. Moreover, in the above context, it imposes a condition on the size of
the grid; i.e. there should always be C0h−1/2 grid points near the location
of the point mass, x0. In our case, this translates to the restriction of the
mesh size in relation with the diameter of each connected component of
{p : φ(x, p) < 0} for each x. There is yet another disadvantage of using ker-
nels with higher moment conditions, and it stems from the particular shapes
of ρ̄. At each “overturning” of the gradients ∇xS, ρ̄ develops a singularity,
which is numerically realized as a narrow peak. Higher order kernels typi-
cally result in small oscillations near such kind of peak. This is, to certain
level, related to the interpolation of discontinuous functions using a smooth
basis. Figure 3.3 shows a comparison of a computation done using a fourth
order kernel to that from the cosine kernel. The result obtained from using
a 4th order kernel is much more smeared out and contains oscillations that
do not go away even after grid refinement.

3.3. Numerical examples.

Example 3.1. 1D free motion (V = 0). u0(x) = −sin(πx)|sin(πx)|, and
ρ0(x) = exp(−(x−0.5)2).

This example is taken from [13]. Figures 3.2, 3.3, and 3.4 contain results
using this example. Notice that in Figure 3.4, the averaged velocity ū, de-
fined in (1.15, is plotted against the multivalued velocity, and they values
are equal whereever the system does not develop multivalued solution.

Example 3.2. 1D free motion (V=0)
S0(x) = −α(ln(cosh(x−β))+ ln(cosh(x+β))), and ρ0(x) = 1.

Figure 3.5 shows a progression of velocity and the corresponding density.
We run our algorithm on a succession of mesh sizes of the same problem
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FIGURE 3.2. A numerical study of the regularization of the
δ function. The plot on the left is the density obtained from
using a support size that is constant multiple of the grid size.
The right one is the density integral evaluated with the pro-
posed scaling. These are numerical solutions to the problem
described in Example 3.1.
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FIGURE 3.3.
The dashed lines are the density computed by using the fourth order

kernel. The solid lines are the result obtained from using the cosine kernel.
The grid sizes are respectively 100 and 400. These are numerical solutions

to the problem described in Example 3.1.

with α = 0.75 and β = 1.0. One result is shown in Figure 3.6. Figures 3.7
and 3.8 show some 4D computational results using α = 0.5 and β = 1.0.
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Example 3.3. Consider the 1-D model with periodic potential V (x) = cos(2x+
0.4))

S0(x) = sin(x+0.15),

ρ0(x) =
1

2
√

π

[

exp

(

−
(

x+
π
2

)2
)

+ exp

(

−
(

x− π
2

)2
)]

.

Figure 3.9 shows a progression in time of the velocity and the corre-
sponding density. The velocity eventually develop some small details that
require a finer grid to resolve. Figure 3.10 shows a plot at a later time for
this system. In this figure, we also plotted the averaged velocity, and as a
function of x, it has discontinuities where φp = 0.

Example 3.4. A radial symmetric two dimensional test problem: φ0(x1,x2) =
0.5(1− r2), where r2 = x2

1 + x2
2. V (x) = 0.

The averaged density function is plotted at T = 1.0 and 1.25. See Figure
3.11.

Example 3.5. Consider a 2-D model with a quadratic potential (Harmonic
oscillator V = |x|2/2).

S0(x1,x2) = 0.6(sin(0.4πx1)−0.1)(sin(0.4πx2)−0.2),(3.2)

ρ0(x) = exp(−|x|2)+1.0.(3.3)

Figure 3.12 shows the averaged density of the system at time T = 8.0
and Figure 3.13 shows the contour plots of the components of the averaged
velocity.

4. CONCLUSION

We introduce a new level set method for computing the multivalued den-
sity and other physical observables for the semiclassical limit of the Schrö-
dinger equation. The proposed method is built upon our previous approach
for computing the phase gradients [4, 16, 22]. Compared to the moment
methods that are contrained by a predetermined number of multivalued
branches, our approach automatically computes all the branches that oc-
cur in the system. Furthermore, instead of solving a system of weakly
hyperbolic equations, as in the moment methods, which require delicate
computations, we solve a linear convection equation that generalizes easily
to any number of dimensions. What is new to our previous approach, and
also to other methods, is in the moment (density, momentum, etc.) calcu-
lation. The density is computed by evolving the same linear equation with
smooth initial data, and all of the moments can then be evaluated by integra-
tion in the phase directions along the bicharacteristics strip only at the time
needed. We do not track any singular quantities that might require extra
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FIGURE 3.4. 200 grid points is used. In the plot on the
left, the multivalued velocity is shown as the dotted curve
against the average velocity in solid curve. On the right is
the corresponding density ρ̄.

grid resolution and might result in oscillation or excessive smearing. With
our numerical treatment of the last integration step, the sharp result can be
obtained efficiently.

The applications of the method are not restricted to the computation of the
semiclassical limits of the Schrödinger equations. Similar problems arise in
geometrical optics, seismic imaging and multiple arrivals where the com-
putation of multivalued solutions are essential. The techniques discussed
in this paper are naturally geometrical and very well suited for handling
multivalued solutions.

APPENDIX

In this appendix we provide an alternative justification of the level set
method introduced.

Consider the initial value problem for the Liouville equation

∂tw+ pwx −Vxwp = 0 ,(4.1)

w(0,x, p) = ρ0(x)|∂pφ0(x, p)|δ(φ0(x, p)) .(4.2)

Recall that the problem we want to solve, the semiclassical limit of the
Schrödinger equation (1.1) with initial data (1.2), is the case when φ0(x, p) =
p−u0(x) for continuous u0(x), or φ is the signed distance function for dis-
continuous u0.

Introduce the Hamiltonian flow,

(4.3)

{

x′(t) = p , x(0) = x0,
p′(t) = −Vx(x) ; p(0) = p0.
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FIGURE 3.5. 5-folding in the velocity (the left cloumn) and
the corresponding averaged density (the right column). 50
grid points are used in our computation, and the results are
plotted at T = 3.5,5.0, and 7.5.
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FIGURE 3.6. A numerical convergence study. The density
function ρ̄ is plotted at T = 3.2 using different grid sizes.
The the figure on the left shows the multiple branches of the
velocity. In figure on the right, the dashed line corresponds
to h = 0.16; The dash-dotted line (h = 0.04); and the solid
line(h = 0.01).

FIGURE 3.7. Example 3. 30 grid points in each dimension.
T = 0.99. The plot on the left is the velocity, the plot on the
right is the density computed.
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FIGURE 3.8. The plot on the left is the density computation
with bad scaling. One can see the oscillations.

We denote the solution to these ODEs by x = x(t,x0, p0) and p = p(t,x0, p0).
The curves (x, p) are the bicharacteristics in phase space. Assume V is
smooth. Since the Hamiltonian flow is volume preserving, the bicharacter-
istic curves defined by (4.3) are invertible and we denote the inverse func-
tions by (x0(t,x, p), p0(t,x, p)). Since the solution of the Liouville equation
(4.1) is a constant along the bicharacteristic curve defined by (4.3), we have

w(t,x, p) = w(0,x0(t,x, p), p0(t,x, p))

= ρ0(x0)|∂pφ0(x0, p0)|δ(φ0(x0, p0))(4.4)

We now consider the following two problems.

∂t f + p · fx −Vx · fp = 0 ,(4.5)

f (0,x, p) = ρ0(x)|∂pφ0(x, p)| ;(4.6)

∂tφ+ p ·φx −Vx ·φp = 0 ,(4.7)

φ(0,x, p) = φ0(x, p) .(4.8)

The exact solution to these two problems are

f (t,x, p) = ρ0(x0)|∂pφ0(x0, p0)|(4.9)

φ(t,x, p) = φ0(x0, p0)(4.10)

So clearly, by comparing (4.4) with (4.9), (4.10), we have

(4.11) w(t,x, p) = f (t,x, p)δ(φ(t,x, p)) .
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FIGURE 3.9. Example 3.3. 50 grid points over [−3,3]. The
left column shows the multivalued phase gradients at time
T = 0.0,6.0, and 12.0. The right column shows the corre-
sponding density.

The physical observables of the Liouville equation (4.1) are thus given
by

ρ =
Z

wdp =
Z

f (t,x, p)δ(φ(t,x, p))dp ,(4.12)

ρu =

Z

pwdp =

Z

p f (t,x, p)δ(φ(t,x, p))dp .(4.13)
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FIGURE 3.10. 200 grid points are used. The dotted line and
the solid line in the plot on the left correspond respectively
to the multivalued phase gradient and its average (ū). The
plot on the right is the corresponding density ρ̄ at T = 18.0.

FIGURE 3.11. T = 1.0 and 1.25. 40 grid points.
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FIGURE 3.12. Averaged density of Example 3.5 at T = 6.7.
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