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Abstract. We introduce a level set method for computational high frequency wave
propagation in dispersive media and consider the application to linear Schroödinger
equations with high frequency initial data. High frequency asymptotics of dispersive
equations often lead to the well-known WKB system where the phase of the plane wave
evolves according to a nonlinear Hamilton-Jacobi equation and the intensity is governed
by a linear conservation law. From the Hamilton-Jacobi equation, wave fronts with mul-
tiple phases are constructed by solving a linear Liouville equation of a vector valued
level set function in the phase space. The multi-valued phase itself can be constructed
either from an additional linear hyperbolic equation in phase space or an additional
linear homogeneous equation and component to the level set function in an augmented
phase space. This phase is in fact valid in the entire physical domain, but one of the
components of the level set function can be used to restrict it to a wave front of inter-
est. The use of the level set method in this numerical approach provides an Eulerian
framework that automatically resolves the multi-valued wave fronts and phase from the
superposition of solutions of the equations in phase space.
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1. Introduction

In this work, we are interested in the computation of high frequency propagating waves
for equations arising in dispersive media. The intention of this paper is to introduce a
general level set method and framework for multi-phase computations of problems of this
type. However, the application that we focus on is the time-dependent multi-dimensional
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Schrödinger equation,

iε∂tψ
ε = −ε2

2
∆ψε + V (x)ψε, x ∈ IRn,(1.1)

subject to the high frequency initial data,

ψε(x, 0) = A0(x) exp

(
i
S0(x)

ε

)
,(1.2)

where ψε is the complex wave field, V (x) is a given potential function, and ε > 0, appearing
in both the equation and the initial data, denotes a re-scaled Planck constant. Here the
regime of interest is the so-called semiclassical regime, where ε tends to zero.

Apart from quantum mechanics, problem (1.1) with (1.2) arises in many contexts in
classical wave propagation such as the paraxial approximation of forward propagating
waves [26]. Thus, it is of practical importance for computing high frequency wave propa-
gations in many applied fields such as radio engineering [27], laser optics [59], underwater
acoustics [60], the investigation of light and sound propagation in turbulent atmosphere
[61], seismic wave propagation in the Earth’s crust [54], Bose Einstein condensates [1],
and a host of other subjects. In these applications, the potential V is explicitly related
to the feature of the propagating medium.

In the semiclassical regime, where the scaled Planck constant ε is small, one can seek
plane wave solutions with the WKB ansatz,

ψε = Aε(x, t) exp(iS(x, t)/ε).

Assuming that the phase S and the amplitude Aε are sufficiently smooth, we may expand
the amplitude in powers of ε,

Aε = A0 + εA1 + ε2A2 + · · · .
Inserting this expression into (1.1) and balancing terms of O(1) order in ε with separate
real and imaginary parts leads to separate equations for A and S. The phase function S
will satisfy a nonlinear first order equation of Hamilton-Jacobi type,

(1.3) ∂tS +H(x,∇S) = 0, H(x, p) := V (x) + |p|2/2,
and the amplitude A0 solves a transport equation,

(1.4) ∂tA
2
0 +∇ · (A2

0∇S) = 0.

When ε is small, the leading term, A0, becomes significant. The above system is weakly
coupled since the phase S can be solved independently from equation (1.3). This Hamilton-
Jacobi equation in general develops a singularity in finite time. A standard numerical
method using the analogue of shock capturing ideas for the Hamilton-Jacobi equation will
select a unique solution, called the viscosity solution [17, 43]. Unfortunately, this class of
weak solutions is not appropriate for treating dispersive wave propagation problems. As
is known in the literature, see, e.g., [9, 19, 11, 12, 31, 55], using the entropy notion for the
eikonal equation leads to a measure-valued solution, i.e., solution of delta function type,
in the intensity A2 on the shock curves of the phase. These singularities are called caustics
since the energy of the wave becomes infinite there. This clearly contradicts the a priori
estimates for (1.1). A natural way to avoid such difficulties is to seek multi-valued phases
corresponding to crossing waves. This means in general, for every fixed (x, t) which is
not on the caustic, one tries to construct a set of phase functions {Si}, i = 1, 2, · · · , each
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of which is a solution of the Hamilton-Jacobi equation in a neighborhood of (x, t). This
set is referred to as the multi-valued solution of the Hamilton-Jacobi equation. Actually
in the context of wave propagation, the correct solution generally allows a multi-valued
phase while the viscosity solution picks out the phase corresponding to the first arrival
wave.

Given multi-valued phase functions, uniform asymptotic formulas for the wave field near
the caustics can be constructed via several techniques such as boundary layer techniques
[2, 10] as well as phase space approaches, Lagrangian integrals [18, 41, 42], and the method
of canonical operator [44, 63].

A relatively new phase space technique for studying oscillatory solutions of dispersive
equations is based on the use of the Wigner transform, which has drawn increasing in-
terest, see e.g., [3, 29, 34, 37, 39, 56]. The Wigner transformation provides a phase space
description of the equations of the problem and has been shown to be very useful for
asymptotics since it “unfolds” the caustics, due to the linearity of the Liouville equation
used in the phase space. This technique provides an alterative approach to the WKB
method, see, e.g., [56]. There is, however, a serious drawback in the direct numerical
approximation of the Liouville equation. There are two ways to remedy this problem in
the literature. One is the moment method which is based on reducing the number of
independent variables by introducing equations for moments. The other is based on com-
putations of special wave front solutions. For tracking wave fronts in geometrical optics,
some geometry based methods in phase space such as the segment projection method [23]
and level set method [47, 15, 52] have been recently introduced. Consult [21] for a recent
survey on computational high frequency wave propagation in geometrical optics.

In this paper we introduce a general level set method for computing multi-valued so-
lutions to more general HJ equations of the form (1.3), which includes the one studied
in [47]. Computation of the multi-valued density based on (1.4) is left to a future work.
We begin by sketching the idea explored in the present work. A formal analysis of the
HJ equation (1.3), obtained by tracking classical characteristics, suggests that a solution
will in general become multi-valued in finite time. The bi-characteristics in (x, p) space,
governed by (2.2)-(2.3), may be referred to as rays, as in geometrical optics [47]. It is
shown that in general the phase S changes its shape along the ray in (x, p) space and in
fact satisfies a forced hyperbolic transport equation,

(1.5) ∂tS + F · ∇{x,p}S = B, F := (∇pH,−∇xH)�, B = p · ∇pH −H.

The linearity of this equation “unfolds” the caustics in the phase space of (x, p) ∈ IR2n,
but the equation itself is not enough for us to resolve the multi-valued phase S in physical
space. In order to do so we need to restrict the phase value to the manifold p = ∇xS in
(x, p) space and then project to the physical space of x ∈ IRn. Our approach to identify
the manifold p = ∇xS is by the intersection of the zero level sets of n functions in (x, p)
space. These level set functions, labeled φ = φ(t, x, p) in general, evolve according to the
linear homogeneous equation,

(1.6) ∂tφ+∇pH · ∇xφ−∇xH · ∇pφ = 0

with proper chosen initial data, e.g., φ0 a component of p − ∇xS0. This equation has
the advantage of the linear superposition property of the ray equations and, like the HJ
equation, the solution is defined by PDE’s and can easily be computed on a uniform
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Eulerian grid. Note also that this equation has the same form as the Liouville equation
encountered in kinetic model based methods except that the solution here is the level
set function, instead of a particle density function. With this in mind we still call it a
Liouville equation.

In order for our approach to be applied to more general cases and if we wish to place
the computation of multi-valued S in the level set framework, we may look at the graph
of the phase z = S(x, p, t) in IR2n+1. This translates to the addition of a level set function,
still labeled φ = φ(t, x, p, z), in the augmented phase space (x, p, z) ∈ IR2n+1. Evolution
of this function is under the equation

(1.7) ∂tφ+ F · ∇{x,p}φ+B∂zφ = 0,

where the initial data can be taken to be φ0 = z − S0(x). In this way, the multi-valued
S on the whole physical domain can be obtained from the intersection of the zero level
sets of the n+1 level set functions in (x, p, z) which evolve under n equations of the form
(1.6) and the equation (1.7).

In order to gain further insight into the structure of the multi-valued solution S, we are
also interested in computing the wave front solution, i.e., some special solution associated
with the underlying front surface. Note that in the context of geometrical optics, as
studied in [47], the phase does not change its shape along the ray. The wave front is
therefore defined as the level curve of the phase and the wave front solution is completely
determined by computing the front location. However in the current Schrödinger setting
the phase S does change its shape along the ray in (x, p) space. The natural question is in
what sense is the wave front defined? Consistent with the geometrical optics case, in this
paper we define the wave front, or more specifically, bicharacteristic strips, to be the n−1
dimensional surface in (x, p) space, driven by the Hamiltonian dynamics (2.2)-(2.3), and
starting with a level surface of the initial phase S0. For the computation of such a defined
wave front solution, we need to add a level set function and an evolution equation for it.
The location of our defined front surface can be tracked, as in [47], by the intersection of
the zero level sets of n + 1 level set functions in (x, p) space evolving according to (1.6).
n of these functions can be initialized as the components of p−∇xS0, as before, and the
one remaining function can be initialized as the level set of interest of the initial phase,
e.g., S0(x)− C.

In summary using the above two general level set equations, multi-valued phase in the
whole physical domain is resolved and multi-valued wave fronts are tracked via the inter-
section of zero level sets of several level set functions. Note that in the above procedures
we always need the n level set equations initialized to the components of p = ∇xS. This
is not surprising since the Hamiltonian is nonlinear in p. The intersection of these n level
set equations actually gives an approximate phase gradient for the HJ equation. It would
be interesting to clarify how faithful the computed multi-valued gradient ∇xS is.

We wish to point out that the “graph” idea used here is not new and is already exten-
sively explored in various contexts, see, e.g. [16, 24, 46, 62]. However the idea of building
the “graph” and the “gradient” into level set functions that satisfy linear homogeneous
PDE’s is new and very general. With this idea we have recently developed a new level set
framework for tracking multi-valued solutions for a general class of nonlinear first-order
equations [40] which include quasilinear hyperbolic transport equations and nonlinear
Hamilton-Jacobi equations as two prototypical examples in this category. The level set
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equations we obtained in this context are indeed consistent with classical characteristic
theory [16] in the sense that the level set function evolves with the characteristic speed
given by the theory. If the Hamiltonian is linear in p, it is not necessary to include the
gradient in the level set formulation for S, thus reducing the case to the one given in [16]
for a scalar quasilinear transport equation.

We note that [38] have subsequently but independently derived the same level set
Liouville equations for the gradient of phase through an approach involving the techniques
of [16] and [62]. The technique they adopt can in addition be used to obtain multi-valued
solutions of scalar quasilinear hyperbolic equations. For Hamilton-Jacobi equations, the
multi-valued gradient of the solution is derived.

In the calculation of wave propagation, high frequency approximations have been ex-
tensively used and proved to be quite accurate both numerically and analytically. In such
an approach, phase and amplitude vary on a much slower scale than the wave field in the
original wave equations and are thus easier to compute. However, such approximations
fail either on caustics and focal points, where they predict wave amplitudes, or in shadow
regions (i.e., regions devoid of rays), where they yield zero fields. On the other hand,
the formation of caustics is a typical situation in many physical systems, for example, in
seismology as a result of multiphase propagation from localized sources. From the math-
ematical point of view, the formation of caustics and the related multi-valuedness of the
phase function is the main obstacle in constructing global high frequency solutions of the
dispersive wave equation.

In this context the main numerical issue is to compute the multi-valued solution of the
Hamilton-Jacobi equation in order to capture the multiple phases in the wave propagation.
For this a number of numerical techniques have been proposed, see, e.g., [4, 5, 20, 22, 53].
For multi-phase computations in the semiclassical limit of the Schrödinger equation, see,
e.g. [32, 37]. Our main goal in this paper is, again, to formulate a generic level set
framework to compute the multi-valued solutions of the above Hamilton-Jacobi equations
and to track the wave fronts and associated phases.

The problem of numerically obtaining multiple phases in geometrical optics has tradi-
tionally been handled by solving the characteristic field related to the eikonal equation.
This involves ray tracing methods using the linear superposition principle and can be
formulated, in the Lagrangian view point, as solving a system of ODE’s to track the
wave front. An obvious drawback of this method lies in obtaining adequate spatial reso-
lution of the wave front in regions with diverging rays. Recently, the multi-valued phase
function has been handled by properly partitioning the propagation domain and using
eikonal solvers (see, e.g., [20]). A different approach is based on the kinetic formulation
in phase space, in terms of a density function that satisfies Liouville’s equation, where
the technique used to capture the multi-valued solutions is based on a closure assumption
of a system of equations for the moments of the density, as remarked earlier, see, e.g.,
[6, 7, 22, 30, 32, 33, 37, 53].

Before closing this section, we would like to point out the similarities and differences of
the Wigner transform approach and the level set approach we employ in this work. Our
interest via the level set method is to track the wave front with multi-phases and compute
the multi-valued solution S in the whole domain. For the Hamilton-Jacobi equation for
phase S, we choose the zero level set to be the wave front of the phase and track its
evolution by solving a level set equation, i.e., the Liouville equation (1.6) in the phase
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space (x, p). As remarked earlier we resolve the phase S by evolving a zero level set in an
extended space (x, p, z) via the level set equation (1.7). Since the phase does not stay on
any zero level set in (x, p) space, it satisfies the forced hyperbolic equation,

∂tS + (p,−∇xV )� · ∇x,pS = |p|2/2− V (x).

In the Wigner approach, the Wigner transform of the wave field is defined by

W ε(x, k, t) :=
1

2π

∫ ∞

−∞
exp(−iky)ψε(x+

εy

2
, t)ψ̄ε(x− εy

2
, t)dy.

The most natural candidate for the solution of the Wigner equation is the Wigner trans-
form of the WKB solution ψε = A(x, t)exp(iS(x, t)/ε), which reads,

W ε(x, k, t) =
1

πε

∫
A(x+ y, t)A(x− y, t)exp(iF (y; x, k, t)/ε)dy,

where the Wigner phase F is given by

F = S(x+ y, t)− S(x− y, t)− 2ky.

The main contribution of this integral comes from the stationary point of the phase F ,
i.e., ∂yF = 0, which relates the kinetic speed to the phase gradient around the Lagrangian
manifold {(x, k)|k = ∇xS}, i.e.,

k =
∇xS(x+ y) +∇xS(x− y)

2
,

and the weak limit of this Wigner integral becomes |A(x)|2δ(k −∇xS(x)), see, e.g., [25].
After the Wigner function is computed, the position density |ψ|2 and the momentum
|φ|2∇xS are recovered via the moment procedure, see, e.g., [37]. It is interesting to see
that both Wigner function and the level set function we consider in (x, p) space both
satisfy the Liouville equation of the same form (1.6) even though the phase speed in both
cases calls for a different interpretation.

This paper is organized as follows: §2 is devoted to formulating a new level set equation
for which the switch from Lagrangian coordinates to Eulerian formulation is described. In
§3 we discuss the possible reduction of the phase space dimension and explain the possible
failure of such a reduction in some cases. §4 is devoted to documenting the numerical
techniques used in our level set approach in a multi-dimensional setting; In §5 we present
a selected group of numerical simulations.

The main observation and results in this paper were reported in detail by the first author
at several occasions including the IPAM Lake Arrowhead Reunion Workshop, September
15-19, 2002; Princeton University, September 30, 2002, CSCAMM in the University of
Maryland, December 3, 2002, and the IPAM workshop on “Emerging Applications of
Nonlinear Schrödinger equations”, Feb 6-10, 2003. For slides see [14].

2. Level Set Formulation

The level set method is a computational method for tracking the evolution of interfaces,
proposed in [49]. The idea is to represent a curve/surface as a zero level set of some
properly chosen function. The motion of the curve/surface is given by a transport equation
based on the physics describing the evolution of the interface.
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The choice of the level set function depends on the interface considered. In the context
of the semiclassical regime, we are interested in both wave front propagation and the
phase determined by Schrödinger’s equation.

We proceed in two steps to realize the phase value S via the level set method.

Step 1. Evolution in phase space, (x, p) ∈ IR2n,

The solution S of the Hamilton-Jacobi equation,

(2.1) ∂tS +H(x,∇xS) = 0,

can be obtained, at least locally, by the method of characteristics. This means that each
point in the neighborhood of the initial manifold is reached by a unique integral curve
x(t, α), called a ray, with x(α, 0) = α being the initial position of each ray. Set

p := ∇yS(x(t, α), t),

the curves, (t, α) → (x(t, α), p(t, α)), called bicharacteristics, and solve the ODE’s

dx

dt
= ∇pH(x, p), x(0, α) = α,(2.2)

dp

dt
= −∇xH(x, p), p(0, α) = ∇xS0(α).(2.3)

Having solved this system we obtain the solution of the HJ equation (2.1) by integrating

(2.4)
dS(x, t)

dt
= p · ∇pH(x, p)−H(x, p), S(x(0, α), 0) = S0(α).

Let the initial manifold be parameterized as {α = γ(θ), θ ∈ I ⊂ IR} and let p0(θ)
and S0(θ) be given functions on the initial manifold. The projection {x = x(t, θ), t ∈
IR+, θ ∈ I} of the characteristics onto Rn are the usual rays of geometrical optics. The
solution of the Hamilton-Jacobi equation is given by

S(x(t, θ), t) = S0(γ(θ)) +

∫ t

0

(p · ∇pH −H)dt,

where the integral is calculated along the characteristics.
The transformation

(t, θ) → x(t, θ)

is invertible and (t, θ) may be non-smooth or multi-valued functions of x. Thus rays may
intersect but the characteristics will never intersect in phase space. The phase solution
S(x, t) may also be a multi-valued function.

To allow the multi-valued description of the phase S(x, t) = {Si(x, t)}N
i=1, we study the

evolution of S in the phase space of (x, p) ∈ IR2n, governed by

(2.5) ∂tS +∇pH(x, p) · ∇xS −∇xH(x, p) · ∇pS = p · ∇pH(x, p)−H(x, p).

Since this equation is linear we know that the solution S exists for all time. In contrast
to the case of a nonlinear HJ equation (2.1), we have global solutions for (2.5), i.e., no
caustics appear in phase space! Note that the initial data is given by p = ∇xS0(α) and the
curves x(t, α) are the rays associated to the Hamilton-Jacobi equation (2.1) with initial
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data S(x, 0) = S0(α). This reflects the fact that the bicharacteristics in phase space are
projected down to rays x(t, α) in physical space and include an additional curve p(t, α),
which is the gradient of the phase S along the rays.

Clearly the phase S does not stay on any zero level set in (x, p) space since it satisfies
a forced hyperbolic transport equation (2.5). To evolve S as a whole solution to (2.1) via
a zero level set, one can extend the phase space by introducing an additional variable.

Step 2. The choice of the level set function

The wave front to be tracked can be realized as the intersection of the zero level sets of
n+1 level set functions as described previously. Each level set function remains unchanged
along the characteristics, which implies that each level set function φ solves the Liouville
equation

(2.6) ∂tφ+ U · ∇φ = 0

with velocity field U = (∇pH,−∇xH). Among the n + 1 level set functions, n are used
to represent p = ∇xS and one is used to identify the front location.

The choice of the level set for realizing the multi-valued phase S depends on the specific
form of the Hamiltonian H(x, p).

1) If H(x, p) is homogeneous of degree 1 in p, i.e., for any λ ∈ IR+, H(x, λp) = λH(x, p),
then p · ∇pH = H , and thus S satisfies the homogeneous equation

(2.7) ∂tS +∇pH(x, p) · ∇xS −∇xH(x, p) · ∇pS = 0,

which implies that S remains constant along the ray. One can simply solve this homoge-
neous hyperbolic PDE, the same as the Liouville equation (2.6) above, since its linearity
already “unfolds” the possible multi-valuedness in (x, p) space. For the wave front solution
one just needs to locate the multi-valued front surface as above, see [47], since S remains
the same on the wave front surface. The multi-valued S on the physical domain, which
was not computed in [47], is simply the restriction of S, obtained by solving 2.7 directly
with initial data S0(x), on the manifold p = ∇xS, which is obtained by the intersection
of the first n zero level sets stated above.

A prototypical example is the geometrical optics approximation for the wave equation

∂2
t u = c(x)∆u,

for which the phase satisfies

∂tS + c(x)|∇xS| = 0,

which is the HJ equation (1.3) with H = c(x)|p|, see [22, 23, 47].

2) For a general HamiltonianH(x, p), the source term p·∇pH−H may not be identically
zero. The phase of the wave function will change its shape along the rays. The level set
method in [47] does not work in this case even for computing the multi-valued wave front
solution. Thus we derive here a new level set formulation for realizing S.
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We introduce an artificial space variable z and consider the characteristic field (2.2)-
(2.3) augmented with velocity field in z,

dz

dt
= p · ∇Hp(x, p)−H(x, p).

Note that the above equation when combined with (2.4) implies that the graph z =
S(t, x, p) is preserved along the extended characteristics,

dx

dt
= ∇pH(x, p), x(0, α) = α,

dp

dt
= −∇xH(x, p), p(0, α) = ∇xS0(α),

dz

dt
= p · ∇Hp(x, p)−H(x, p), z(0, α) = S0(α).

We introduce a level set function φ = φ(t, x, p, z) so that the graph z = S can be realized
as a zero level set,

(2.8) φ(t, x, p, z) = 0, z = S(t, x, p).

This level set function should also be preserved along the extended characteristics, i.e., it
solves the transport equation

(2.9) ∂tφ+ U · ∇{x,p,z}φ = 0,

where the corresponding velocity field is

U = (∇pH, −∇xH, p · ∇pH −H).

In fact the above level set equation can also be formally derived from the hyperbolic PDE
(2.5) in a similar manner as in [16, 62]. Taking the gradient of the zero level set (2.8),
one has

(2.10) ∇{t,x,p}φ+ ∂zφ∇{t,x,p}S = 0,

where we have used the fact that z = S(t, x, p). Note that ∂zφ �= 0, so multiplication of
(2.5) by −φz when combined with (2.10) leads to the above level set equation (2.9).

To realize S in (x, p) space one needs just one level set function, which can be generated
by solving (2.9) with initial data simply chosen as

φ(0, x, p, z) := z − S0(x).

To resolve S in the physical space x ∈ IRn one needs to also resolve p by an additional n
level set functions, call them φi, which can be generated by solving the level set equation
(2.9) with initial data chosen as

φi(0, x, p, z) = pi − ∂xi
S0(x), i = 1 · · ·n.

Since both H and the initial data chosen in this way do not depend explicitly on S, the
level set equation (2.9) reduces to the linear Liouville equation (2.6) without z involved.
Geometrically the graph z = S is realized by the intersection of a z related zero level
set and n gradient-related zero level sets; the multi-valued front surface is tracked by
the intersection of a front related zero level set and n gradient-related zero level sets.
In both procedures the intersection of the latter n gradient-related zero level sets also
approximately resolves ∇xS in the whole physical domain.
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Clearly in order to track wave fronts one can still work in (x, p) space and solve the
linear Liouville equation (2.6). However using level set functions in the extended (x, p, z)
space enables us to evolve the phase S as a zero level set in the entire physical domain.

3. Reduction of the Phase Space

In practice, one encounters problems with available computer memory when performing
higher dimensional computations. This section is devoted to the possible reduction of the
phase space dimension. We shall illustrate this with the case x ∈ IR2. Higher dimensions
can be handled in a similar manner.

Along the flow determined by the velocity field, U = (∇pH,−∇xH),

d

dt
H = U · ∇{x,p}H = 0,

hence the energy is conserved,

(3.1) H(x, p) = H(α, p0(α)),

where α denotes the initial position of each particle path.
One of our goals is to visualize the propagation of the wave front for any given initial

wave profile. Assume the initial level curve is determined by φ0(x) = 0, then

α ∈ {x, φ0(x) = 0}.
Let this level curve be parameterized in terms of a single quantity ψ. Then one has
α = α(ψ) and also H(α, p0(α)) = H0(ψ). Since along the particle path this parameter
does not change, we have

(3.2)
d

dt
ψ = 0.

This technique was introduced in [35]. Since H(x, p) = |p|2/2+ V (x), the conservation of
the energy (3.1) tells us that the amplitude of the ray |p| can be expressed in terms of x
and ψ, i.e.,

(3.3) |p| =
√

2(H0(ψ)− V (x)).

The above facts enable us to reduce the phase space from (x, p, z) ∈ IR5 to IR4.
Let p = |p|(cosθ, sinθ) in polar coordinates with θ ∈ [−π, π]. One then has

p′ = |p|′(cosθ, sinθ) + |p|(−sinθ, cosθ)θ′.

Multiplying this by (−sinθ, cosθ)� on the right gives

θ′ =
p′

|p| · (−sinθ, cosθ)�.

Therefore from H = |p|2
2

+ V (x) it follows the velocity field is

dx

dt
= ∇pH = p = |p|(cosθ, sinθ),

dp

dt
= −∇xH = −∇V (x),

dz

dt
= p · ∇pH −H =

|p|2
2

− V (x) = H0(ψ)− 2V (x).
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This when combined with (3.3) leads to the reduced Lagrangian formulation for d
dt
(x, θ, z) =

U with velocity field

U1 =
√

2(H0(ψ)− V (x))cosθ,(3.4)

U2 =
√

2(H0(ψ)− V (x))sinθ,(3.5)

U3 =
Vx1sinθ − Vx2cosθ√
2(H0(ψ)− V (x))

,(3.6)

U4 = H0(ψ)− 2V (x).(3.7)

Therefore in the reduced phase space, (x, θ, z) ∈ IR4, the level set equation (2.9) becomes

∂tφ+ U(x, θ, ψ) · ∇{x,θ,z}φ = 0, (x, θ, z) ∈ IR4.

This equation is not closed because the velocity depends on the Lagrangian index ψ,
which is constant just along the flow. In the Eulerian formulation this Lagrangian index
satisfies the same transport equation as the level set does, i.e.,

∂tψ + U(x, θ, ψ) · ∇{x,θ,z}ψ = 0.

We can use an upwind type scheme to solve this transport equation, even if it is very
slightly nonlinear. The level set function evolves based on the updated velocity field.

The choice of ψ is not unique, however, one can take ψ = H in the above setting since
the energy H is conserved along the characteristics. Note, in fact, that ψ appears only in
the term H(ψ) and so, alternatively, we may track the value of H along with the wave
front, using the value when needed for the velocity field.

From the velocity in the reduced space we observe that the singularity may appear for
non-vanishing potential, and thus working in the full space is still necessary.

For x ∈ IR1 such reduction is unnecessary. In this case there is no wave front to be
tracked, however the phase value in the whole space x ∈ IR1 can be easily realized via the
intersection of two zero level sets

φi(t, x, p, z) = 0, i = 1, 2,

where φ1 is generated by solving the linear Liouville equation,

(3.8) ∂tφ1 + ∂pH∂xφ1 − ∂xH∂pφ1 = 0

with initial data chosen as

φ1(0, x, p, z) = p− ∂xS0(x);

the level set function φ2 is obtained by evolving the generalized Liouville equation,

(3.9) ∂tφ2 + ∂pH∂xφ2 − ∂xH∂pφ2 + (p∂pH −H)∂zφ2 = 0

subject to initial data chosen as

φ2(0, x, p, z) = z − S0(x).
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4. Numerical Techniques

Our main task is two-fold: (1) construct the wave front and track its evolution; resolve
the associated multi-valued phase. (2) resolve the multi-valued phase S in the entire
domain.

As shown in Section 2, for (1), we need to compute n + 2 level set functions, among
which n+1 level set functions can be used to resolve the multi-valued phase S in the whole
physical domain. In our numerical simulations we shall focus mainly on the 2-dimensional
case. We thus compute the multi-valued wave front solution in (x, p) space by solving
the Liouville equation (1.6), where the multi-valued S is obtained from solving the forced
hyperbolic equation (2.5) and then extracting it on the obtained front surface. In the one-
dimensional case, we illustrate (2) by the use of n + 1 = 2 level set functions in (x, p, z)
space by solving a coupled system (1.6) and (1.7). Consult [40] for the computation of
multi-valued solutions of more general nonlinear first-order PDE’s.

The numerical technique for wave front construction in the setting we describe here
follows the framework and ideas of [47] for geometrical optics. Wave front construction
in geometrical optics encounters many of the same difficulties, namely that of resolving
wave fronts and handling multi-valued solutions. The approach taken in the recent works
of [23, 28, 47] is to work in phase space on bicharacteristic strips, which represent the
wave fronts when projected to physical space. The fact that bicharacteristic strips remain
smooth in phase space in spite of multi-valued wave fronts addresses the difficulties of
multi-valuedness. Furthermore, an Eulerian method employing a fixed grid in phase
space can be used to capture desired bicharacteristic strips and hence desired wave fronts.
This grid handles the problem of resolution. The Eulerian approach adopted in [47]
involves the vector valued level set method [8] for representing the high codimensional
bicharacteristic strips and solving the Liouville PDE to capture their evolution. We follow
the basic framework set in [47] and comment on changes that need to be made specific to
our Schrödinger equation setting.

Let φ(t, x, p) denote the vector valued level set function that represents the bicharacter-
istic strips in phase space (x, p) ∈ IR4. In the two dimensional physical space case, phase
space is four dimensional and the bicharacteristic strips, which have the same dimension
as the wave fronts, are one dimensional. Following the procedure outlined in [8], a vec-
tor valued function φ over phase space with three components, φi, i = 1, 2, 3, is used to
represent the bicharacteristic strips, i.e., they are determined by the set of points where
φ = 0, the zero level set.

The Liouville equation (1.6) governs the evolution of the bicharacteristic strips in
(x, p) ∈ IR4, and thus the wave fronts. This PDE is a transport equation whose ve-
locity field U(x, p) comes from the directions derived in the method of characteristics on
our Hamilton-Jacobi equation of interest. In the level set framework we are adopting, the
evolution is translated to evolution of the level set function through the Liouville PDE
on the components,

∂tφi + U · ∇{x,p}φi = 0,

for i = 1, 2, 3. Note each of these equations can be considered independently. The initial
φ, which we denote by φ0, of course represents the bicharacteristic strips of the initial given
wave fronts, usually certain level set curves of the phase. Construction of this function
can be easily accomplished. For example, if φ̃0(x) = S0(x) − C is the level set function
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over spatial space that represents the initial given wave fronts, then φ0 is determined
through satisfying two conditions. One is that the projection of the zero level set of φ0

to physical space equals the zero level set of φ̃0, i.e., the initial wave fronts. This can be
accomplished by setting the first component (φ0)1(x, p) = φ̃0(x). The second condition is
that p = ∇xS0 must be satisfied at the zero level set of φ0, where S0 is the initial given
phase. This can be accomplished by setting the rest of the components as

(φ0)i(x, p) = pi−1 − (S0)xi−1
(x),

for i = 2, 3. The evolution PDE’s can then be solved with this initial condition in
four dimensional phase space to capture the desired bicharacteristic strips and hence the
desired wave fronts.

In geometrical optics, the phase S on the wave fronts remains constant during evolution,
however, this is not the case in the Schrödinger equation setting. Thus, the phase needs
also to be captured so as not to lose important information in the transfer from the linear
Schrödinger equation to the Hamilton-Jacobi form. This can be accomplished by solving
the Liouville PDE with forcing term,

(4.1) ∂tS + U · ∇{x,p}S = p · ∇pH −H,

for S(t, x, p) in phase space. The initial condition here is S(0, x, p) = S0(x). We can thus
realize the phase value in the entire domain and, especially, the phase on the bicharacter-
istic strips can be extracted by looking at S on the zero level set of φ. Note that S can
be multi-valued when considered in the physical domain. As remarked before, solving the
above linearly forced hyperbolic equation is equivalent to solving the level set equation we
introduced in §2 in light of “unfolding” the multi-valuedness in (x, p) space. Numerically
we choose to solve (4.1) directly and then extract the phase value on the front surface.
However in the 1-D setting we use the level set approach to realize the phase value in the
whole physical domain, as stated at the end of §3.

The PDE evolution equations for evolution of the bicharacteristic strips and the asso-
ciated phase can be solved numerically by using explicit finite difference methods over
a uniform grid in phase space. The forcing function in the equation for phase can be
determined analytically or approximated using central differencing on derivatives. The
rest of the terms in all the PDE’s look the same and can be discretized using high order
upwind schemes for the derivatives in phase space and high order Runge-Kutta methods
for the time derivative. We use WENO-Godunov of fifth order [36] and SSP-RK of fourth
order [57] or TVD-RK of third order [50] in our simulations. The CFL stability condition
in this case says that the time step ∆t needs to satisfy

∆t <
∆x

2maxx,p |U | ,

a relatively mild condition on the time step. Note that phase space can be reduced
one dimension by replacing p by its angle θ as stated in §3. Such techniques have been
successfully used in the geometrical optics case but cannot easily be performed for the
problem we are studying since singularities may develop in the evolution equations when
p · ∇pH −H = 0. As the locations of these singularities are not known a priori, we resign
ourselves to the full phase space formulation.
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In spite of this, we do not, however, need to perform all our calculations at every point
of the four dimensional phase space. This is because only the zero level set of φ is of
interest. Thus it is possible to work in a thin tube surrounding the zero level set, ignoring
points far away. This is the main idea behind the local level set method [51], which
was implemented successfully for the framework in geometrical optics in [47]. Despite
the higher dimension involved in our setting here, the same techniques can be applied to
localize around the bicharacteristic strips, working just in a tube of radius proportional
to the phase space step size ∆x, thus producing an efficient algorithm for wave front
construction. We have not yet produced such an algorithm, and thus all our simulations
occur over coarse grids in four dimensional phase space, but it is clearly doable. In fact,
recent conversations with Chohong Min reveal that a local level set algorithm for vector
valued level set functions in arbitrary dimensions may soon be available.

In the local level set approach, reinitialization, i.e., replacement of the nonunique level
set functions by better versions, is needed to prevent inaccuracies at the tube boundary
from affecting the core, the zero level set. However, reinitialization is also needed to
prevent the zero level set surfaces of the components from becoming near parallel to each
other at their intersection. This is particularly important when using coarse grids in
certain situations, as results in our simulations show. The reintialization algorithm in our
work here should differ from that in [47] and those previously investigated since we are
dealing with a three component level set function. The desired form for the components
are that each is a signed distance function with orthogonal zero level set surfaces. However,
in practice, we only need approximations of these properties near the zero level set of the
vector valued level set function. In fact, coarse approximations are acceptable in many
situations. In this direction, we have implemented numerous ad hoc but fast methods
in our studies. A better approach seems to be to evolve the first level set function so
that its zero level set, when viewed on the zero level set surface of the second function,
is orthogonal to the zero level set of the third function on that surface. This can be
accomplished through techniques found in [13]. Then the zero level sets of the first and
third can be made orthogonal to that of the second by using the techniques of [8, 47].
Signed distance of the level set functions should be enforced between these steps for a
better form. This procedure can be iterated until a desired, numerically more robust form
near the bicharacteristic strips is achieved. However, a more careful study of the behavior
in general situations is needed.

After the evolution equations are solved to the desired time, the desired wave fronts can
be plotted to show the results of the simulation. The high dimension of the phase space
considered here, however, complicates matters. At this moment, our simplistic approach
to plotting the zero level set of φ involves starting with grid points neighboring it. This is
already an approximation of the desired bicharacteristic strips, albeit a rough one. The
criterion we use to determine if a point neighbors the zero level set is to see if all the com-
ponents φi, i = 1, 2, 3, have different sign at neighboring points. The approximation of the
bicharacteristic strips can then be sharpened by considering for each point its projection
onto the zero level set surfaces of each of the level set function components, looking at the
intersection of the tangent planes there, and replacing the original approximating point
by, for example, the closest point in this intersection. Normals of the level set surfaces of
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φi, i = 1, 2, 3, written as
∇φi

|∇φi| ,
are used for projecting and finding tangent planes. This process can be repeated to
satisfaction. Note flowing the original approximating points to satisfy

√
φ2

1 + φ2
2 + φ2

3 = 1,
as done in [47], can also be employed. The final result is a set of points that approximately
lie on the zero level set of φ. These points can then be projected to spatial space to form
the wave front of interest. Better plotting schemes that produce curves approximating
the wave fronts rather than a cloud of points can be found in the recent work of [45].

We now discuss the numerical treatment when construction of the wave fronts and
realizing the phase value thereon, in reduced space, is a better choice.

In the phase space (x, θ, z) ∈ IR4 we denote a curve as an intersection of three level set
functions φi for i = 1, 2, 3. Thus the system of evolution equations for the time dependent
level set functions can be written as

∂tφi + U(x, θ, z, ψ) · ∇{x,θ,z}φi = 0, i = 1, 2, 3,

where the Lagrangian index evolves according to

∂tψ + U(x, θ, z, ψ) · ∇{x,θ,z}ψ = 0,

with velocity field U given in (3.4)-(3.7). The role of the z variable is to realize the phase
value S on the wave front.

Hence the problem of constructing wave fronts and realizing the phase value becomes
one of solving a system of PDE’s in IR4.

In addition to the techniques described above for working in the full phase space, we
comment on the choice of initial data and prediction of the Lagrangian index ψ.

It is necessary to initialize the three level set functions to represent a given curve in IR4.
For a given initial curve, we may represent it by constructing level set functions based on
the following guiding principles.

(1) One level set gives the initial given front when projected onto physical space;
(2) Another level set is chosen to take care of the angle of the curves;
(3) The last one is chosen to take care of the graph of the initial phase.

One choice for the initial level set (φ10, φ20, φ30) is to take

φ1 = φ0(x),

φ2 = φ0x1sinθ − φ0x2cosθ,

φ3 = z − S0(x).

We should point out when we use the level set method introduced in §2 to resolve the
phase value S in the entire domain, we do need to work in the space of (x, p, z) ∈ IR5. In
the reduced space we also need to predict the Lagrangian index ψ via solving a nonlinear
transport equation

∂tψ + U(x, θ, ψ) · ∇ψ = 0.

In the evolution step, one may just use upwind type methods. Initial data needs to be
properly chosen. As described above, the initial data of ψ is the parameter of the initial
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curve φ0(x) = 0. One needs to express this parameter in terms of the variables (x, θ, z)
in reduced phase space. Let this curve be parameterized as

x1 = x1(s), x2 = x2(s).

Then the initial level set φ1 = 0 leads to

φ0x1

dx1

ds
+ φ0x2

dx2

ds
= 0.

From this and the second initial level set φ2 = 0 we find that

g(s) := −dx1

ds
/
dx2

ds
=

φ0x2

φ0x1

= tan(θ).

Therefore if g is invertible, we have

s = g−1(tg(θ)).

This can be done at least for convex curves, see the following illustrative example.

Example. A level curve of an ellipse φ0(x) =
x2
1

a2 +
x2
2

b2
− 1 can be parameterized as

x = acos(s), y = bsin(s), −π ≤ s ≤ π.

The corresponding function g is determined by g = −dx1

ds
/dx2

ds
= a

b
tan(s) Therefore s =

tg−1[ b
a
tg(θ)]. For a circle, i.e., a = b it turns into s = θ.

5. Numerical Examples

We present several computational examples in order to describe different aspects of our
approach. We first consider free motion, where V (x) = 0. Thus the total energy is just
the kinetic energy

H = H(p) =
|p|2
2

.

The associated Hamiltonian flow is given by x = α+ p0t and the velocity p = p0 remains
constant. We consider examples of phase motion subject to different types of initial phases
S0(x).

Example 1. (No caustics) S0(x) =
|x|2
2
, x ∈ IR2

We take as the initial wavefront one of the circles that make up the level sets of S0(x).
The velocity field in Liouville’s equation in this case takes the form

U(x, p) = (p, 0)

and the circle grows.
Figure 1 shows the growth without any added reinitialization. In this case, the zero

level sets of the components of the vector valued level set function become close to parallel
at a later time and hence the plotter fails to produce a stable curve. Figure 2 shows the
same growth with reinitialization. This provides a more desirable level set representation
that the plotter can handle. There is no multi-valuedness in this example.

In fact solving the characteristic equation d
dt
(x, p) = (p, 0) with initial data (α,∇S0(α)) =

(α, α) one gets x = α(1 + t). From d
dt
S = |p|2

2
one has S = S0(α) +

|p0|2
2

t = |x|2
2(1+t)

.
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Figure 1. The first row shows the effects of a growing circle under free
motion when no reinitialization is employed. The second row shows the
effects of a shrinking circle in the same setting.

Example 2. (Focus) S0(x) = − |x|2
2

x ∈ IR2

In this case, the initial circular wavefront shrinks under the same Liouville equation.
Figure 1 once again shows the results with no added reinitialization and figure 3 shows
the fixed results when reinitialization is used. Multi-valuedness occurs in this example
when the circle becomes a point and then subsequently grows into a circle.

The next series of examples we consider is on the harmonic oscillator. In this case,

V (x) = |x|2
2

and so

H(x, p) =
|x|2
2

+
|p|2
2

, x, p ∈ IR2.
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Figure 2. The evolution of a growing circle under free motion. Reinitiza-
tion fixes the problems seen in figure 1.

In this case the Hamiltonian flow is given by

x = αcos(t) + p0sin(t),

p = −αsin(t) + p0cos(t).

Example 3. S0(x) =
|x|2
2
. The initial wavefront is once again a circle. The velocity field

for the Liouville equation is

U(x, p) = (p,−x).

In this case, reinitialization is not needed, at least when the chosen final time is not too
large.

Figure 4 shows the oscillating nature of the circle in this setting. Multi-valuedness
occurs when the circle shrinks to a single point and then expands out again. Actually if
the initial wave front is a circle, then the moving wave front is also a circle with oscillating
radius, i.e., |x|2 = 1 + sin(2t).
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Figure 3. The evolution of a shrinking circle under free motion. Reiniti-
zation fixes the problems seen in figure 1. Multi-valuedness occurs in this
evolution.

Example 4. We collect here results for different initial phases that lead to initial
wavefronts of a shifted circle in figure 5 and two circles in figure 6. Note that mult-
valuedness occurs both when the circles collapse to a point and, in the case of two circles,
when two wavefronts pass through each other.

Finally, figure 7 shows the evolution of an initial wavefront that is a horizontally elon-
gated ellipse and the values of the phase, plotted in the vertical direction, computed for
the wavefronts at different times.

Example 5. We consider in this example the case of

V (x) =
1

2
(x2

1 + ωx2
2),

for some constant ω > 0. Results are shown in figure 8, with phase in figure 9, when
considering an initial elliptical wavefront. Multi-valuedness occurs during the evolution
and is successfully dealt with using our approach. Such non-isotropic potential appears,
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Figure 4. An oscillating circle in the harmonic oscillator setting. Note
multi-valuedness occurs when the circle collapses to a point.

among others, in the context of Bose-Einstein condenste, in which the trapped potential
has different frequencies in the x1 and x2 directions, respectively, see e.g. [1].

Example 6. Finally, we consider a different computation of the phase solution in the
space (x, p, z), where x, p, z ∈ IR. The initial phase is given by z = − ln cosh x in the
case of free motion. Level set functions ψ1 = z + ln cosh x, ψ2 = p + ∂x(ln cosh x) are
used to represent the codimension object of interest. Evolution follows the velocity field

(p, 0,−p2

2
) in the space and thus the curve motion can be captured by solving a transport

equation. Results of this computation, with the curve projected into (x, z) space, are
shown in figures 10 and 11. We note that a caustic appears and its time and location
of appearance agree with the theoretical predictions of t = 1, x = 0. Figure 12 shows
the results when the projection is made into (x, p) space and figure 13 shows the actual
smooth curve evolved in the full (x, p, z) space.
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Figure 5. An initial circular wavefront not centered at the origin shown in
the harmonic oscillator setting. This causes the circle to move left and right
while its radius oscillates. Multi-valuedness occurs during the evolution
when the circle collapses to a point.
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Figure 6. Results of the evolution of two initially circlar wavefronts for
the harmonic oscillator. In this case, multi-valuedness in addition occurs
when the two circles move toward each other and pass through each other
while oscillating.
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Figure 7. In the figure on the left, results of the evolution at different times
of an initial horizontally elongated ellipse are plotted in one diagram in the
harmonic oscillator setting. The figure on the right shows the corresponding
phases on the curves with the vertical direction denoting the value of the
phase.
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Figure 10. Results of phase evolution, with caustic appearing, in free
motion. The vertical axis is the phase z and the horizontal axis represents
space x. This is projected from (x, p, z) space.
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Figure 11. A more detailed look at the caustic of the case considered in
figure 10. The figures in the top row are a zoomed picture at the area
around x = 0 immediately before t = 1. The figures in the bottom row are
the continuation in time showing the caustic immediately after t = 1. The
location and time of appearance of the caustic agree with theoretical studies.
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