A LEVEL SET FRAMEWORK FOR TRACKING MULTI-VALUED
SOLUTIONS OF NONLINEAR FIRST-ORDER EQUATIONS

HAILIANG LIU, LI-TIEN CHENG, AND STANLEY OSHER

ABSTRACT. We introduce a level set method for the computation of multivalued solu-
tions of a general class of nonlinear first-order equations in arbitrary space dimensions.
The idea, following [9], is to realize the solution as well as its gradient as the common
zero level set of several level set functions. A very generic level set equation for the under-
lying PDEs is thus derived. Specific forms of the level set equation for both first-order
transport equations and first-order Hamilton-Jacobi equations are presented. Using a
local level set approach, the multi-valued solutions can be realized numerically as the
superposition of solutions of a linear equation in the augmented phase space. The level
set approach we use automatically handles these solutions as they appear.
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1. INTRODUCTION

Numerical simulations of high frequency wave propagation are important in many ap-
plications. When the wave field is highly oscillatory in the high frequency regime, direct
numerical simulation of the wave field can be prohibitively costly. Examples include the
semiclassical limit for the Schrodinger equation and geometric optics for the wave equa-
tion. A natural way to remedy this problem is to use some approximate model which
can resolve the small-scale in the wave field. The classical approach is the WKB method
or geometric optics, which are asymptotic approximations obtained when the small scale
becomes finer. Instead of the oscillation wave field, the unknowns in the WKB system are
the phase and the amplitude, neither of which depends on the small scale, and typically
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vary on a much coarser scale than the wave field. Hence they are usually easier to compute
numerically.

An obvious drawback of this method is that linear equations are replaced by nonlinear
ones, and thereby the superposition principle is lost. In the last decade, various tech-
niques have been introduced for multi-phase computations found in several applications.
Consult [14] for a recent survey on computational high frequency wave propagation. In
[9] we introduced a general level set framework to compute the multi-valued solutions to
HJ equations, with application to the semiclassical limit of the linear Schrodinger equa-
tion. The goal of our work here is to extend the ideas developed in [9] and [22] for
the computation of multi-valued solutions of a very general class of nonlinear first-order
equations.

We begin by sketching the ideas explored in [9], where we focused on the computation
of multi-valued solutions of the Hamilton-Jacobi equation

(1.1) 0,5+ H(z,V,5) =0, z€lR",

which appears as the phase equation in the semiclassical limit of the linear Schrodinger
equation. The level set functions ¢(t, z, p), defined in the phase space (x,p) € IR*", with
p = V.S, each satisfies a linear Liouville equation,

(1.2) 0o+ Vo H - Vot — Vo H - V= 0,

and wavefronts are tracked as the intersection of the zero level sets of the n + 1 level set
functions. However in the semiclassical regime of the Schrodinger equation, there is also
a need to resolve the phase value S(z,t) in the whole domain. In the context of geometric
optics, the phase remains constant along the ray [25] (as it does for any Hamiltonian
which is homogeneous of degree one in V.S), but in the Schrédinger setting, the phase S
as a function of z and p does not keep the value zero on the zero level set of ¢. Instead
it satisfies the forced hyperbolic transport equation

(1.3) oS+F-v,,8S=B, F:=(V,H ~-V,H)", B:=p-V,H—H.

The strategy in [9] was to look at the graph of the phase z = S(x,t) in the whole domain,
or equivalently to evolve a level set function ¢ = ¢(t, z, p, z) in the extended phase space
(x,p,2) € IR

(1.4) O+ F -V, + B¢ = 0.

In this way, wavefronts with possible multi-phases are tracked and the phase value is
numerically resolved via the intersection of n + 1 zero level sets in the extended space
(z,2,p) € IR* see e.g. [6,9]. In particular, the augmented phase space enables us
to track the phase S in the entire domain and then project onto the wave front surface
when desired. Note that the Hamiltonian H in (1.1) does not explicitly depend on S,
and therefore the equation (1.3) is linear in S. Thus, the singularities of S are already
“‘unfolded’ in the phase space (x, p) € IR*". For this reason, in [9] we chose to either solve
the forced Liouville PDE (1.3) in the whole domain or evolve the whole phase as a zero
level set in (z,z,p) € IR**!, whichever was more convenient. However when F and/or
B depends explicitly on S, the hyperbolic equation (1.3) becomes quasilinear. Thus, for
the computation of multivalued solutions, one needs to evolve the whole solution as the
zero level set of ¢ = ¢(t, x, z), with ¢ satisfying (1.4). We note that the ‘graph’ idea used
in [9] is not new and has already been extensively explored in various contexts, see, e.g.,
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[7, 15, 24, 31]. However, the combination of ‘graph’ and ‘gradient’ was used for the first
time for Hamilton-Jacobi equations (1.1) by us. This is one of the main contributions of
our work in [9].

As is well-known, nonlinear hyperbolic equations, in general, develop singularities in
finite time. Viscosity solutions were invented in [10] to select a unique, physically rea-
sonable single-valued weak solution. Unfortunately, this class of weak solutions is not
appropriate for treating linear wave propagation problems. A natural way to avoid such
difficulties is to seek multi-valued solutions corresponding to crossing waves.

To put our study in the proper perspective, we recall that there has been a considerable
amount of literature available on the computation of multi-valued solutions, ranging from
geometric optics [1, 11, 12, 13, 25] to the semiclassical regime of Schrodinger equations
9, 17, 21]. In the literature, Lagrangian methods (called ray tracing) and Eulerian meth-
ods are the two main approaches used to compute multi-valued solutions. An obvious
drawback of the former lies in numerically obtaining adequate spatial resolution of the
wave front in regions with diverging rays. This problem is avoided in Eulerian methods
through the use of uniform fixed grids in their computations, see, e.g., [2, 3]. With Euler-
ian methods, however, difficulties arise in handling the multi-valued solutions that appear
beyond singularity formation.

A widely acceptable approach for physical space-based Eulerian methods is the use
of a kinetic formulation in the phase space, in terms of a density function that satis-
fies Liouville’s equation, where the technique used to capture multi-valued solutions is
based on a closure assumption of a system of equations for the moments of the density,
see [4, 5, 12, 16, 17, 21]. In geometric optics and the topic of wavefront construction,
geometry-based methods in phase space such as the segment projection method [13], and
the level set method [8, 25, 28] have been recently introduced. For the computation
of multivalued solutions to semiclassical limit of Schrodinger equation, a new level set
method for Hamilton-Jacobi equations was introduced by us in [9], to realize the phase
S on the whole domain with the level set evolution in an extended space (z, z,p). Fur-
thermore, wavefronts are constructed via the linear Liouville equation in the (x, p) space.
As remarked earlier our key idea is to build both the ‘graph’ and the ‘gradient’ into the
zero level set, allowing for computation of multi-valued solutions in the whole domain of
physical interest.

Related to our work in [9], on the computation of multi-valued solutions of Hamilton-
Jacobi equation (1.1), is the recent work of [22]. In this paper, the authors used the level
set formulation given in [7] to obtain the same result as in this paper for the case of a scalar
quasilinear hyperbolic equation. For Hamilton-Jacobi equations of the type (1.1), where
the Hamiltonian does not depend on the solution but only on its gradient, the authors
in [22] derived the same level set Liouville equations for the gradient of phase through
an independent approach involving techniques found in [7] and [31]. They presented
numerical results in one and two dimensions that realized the solution gradient for the
Hamilton-Jacobi equation, plotted using the visualization package devised in [23].

In computing the level set equation in phase space, since the area of interest is close to
the zero level set, it is possible to use fast local level set techniques in the same manner
as in, e.g., [9, 8, 25, 28], which will reduce the total computational cost.

This paper is organized as follows. In §2 we list some nonlinear HJ equations which
arise in the high frequency asymptotic approximation. §3 is devoted to a derivation
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of the generic level set equation for fully nonlinear first-order equations of the form
G(&, u, Veu) = 0. Specific forms of the level set equations for hyperbolic transport equa-
tions and HJ equations are presented. In §4 the computation of multi-valued solutions
for several equations are discussed and the required number of level set functions for re-
alizing the solution as well as the choice of corresponding initial data are specified. In §5
we describe the numerical strategy used and present some numerical results.

2. THE WKB METHOD AND HAMILTON-JACOBI EQUATIONS

Before introducing our general level set framework for the computation of multi-valued
solutions of first-order PDEs, we pause to consider some applications in high frequency
wave propagations for which we have special HJ equations for the phase function of the
wave field. In these cases, the multi-valuedness will reflect the interference of waves. We
illustrate as well how nonlinear HJ equations are obtained via the WKB method. Typical
applications include the semiclassical limit for Schrodinger equations and geometric optics
for the wave equation. The common feature among these problems is the involvement of
a small dimensionless parameter € serving as the microscopic-macroscopic ratio. We look
at the O(e)-wave length solutions, which can be tracked in one wave packet with a spatial
spreading of the order of 1/e if the initial wave field is highly oscillating and takes the
form

(2.1) ¥(z,0) = Ag(x) exp(iSo(z)/€).

The usual way to tackle this problem is to use the WKB (Wentzel-Kramers-Brillouin)
Ansatz, which consists of representing the wave field function ¢ in the form

(2.2) W(w,t) = Az, t) exp(iS(z, 1) fe).

With this decomposition, the most singular part of the wave field is characterized by
two quantities: the phase function S, which satisfies the nonlinear HJ equation, and the
amplitude function A, which satisfies a transport equation.

The derivation of the WKB system in the linear case is classical, see, e.g., Whitham’s
book (1974). We list here two examples, see [30] for more WKB-systems derived from
generalized dispersive equations.

(1) Linear Schrodinger equation:

2
(2.3) iedp)S = —%Awe Y V() xelRY

where V' is the corresponding potential, and € the scaled Planck constant.
(2) The wave equation in an inhomogeneous medium with a variable local speed ¢(x)
of wave propagation in the medium:

(2.4) P = A (x)Ay*, € IR

For these equations and subject to highly oscillatory initial data, we consider the WKB
Ansatz (2.2). Insertion of (2.2) into the above equations leads to corresponding relations
between the wave’s phase S and its amplitude. Splitting the relation into real and imag-
inary parts and taking the lowest-order (in terms of €) terms, we obtain the following
weakly coupled WKB systems:
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(1) WKB-system for the Schrodinger equation (2.3):

2

QA*+V, - (A*V,S) = 0.
(2) WKB-system for the wave equation (2.4):

(2.7) 0S + ¢(x)| VS| =0,
V.S V.S
2.8 O, A® T VAR - APV, i =0,
(2.8) ; +C($)|Vx5\ \Y% Ve .9]
or
(2.9) 0pS — c(x)| VS| =0,
(2.10) O A? — c(x) Va5 VA% + A’V ,c Va5 0.

IV, 5] VLS

We note that for the wave equation (2.4), if we look for a planar wave solution ¢ =
u(x)exp(it/e), we are led to a steady state function solving the scalar Helmholtz equation

(2.11) u+ c*e?Au = 0.

Searching for solutions oscillating with frequency 1/€, we could use the ansatz u(x) =
A(x)exp(iS(x)/e), leading to a weakly coupled system,

(2.12) c(2)|V.S| =1, V,-(A*V,S) =0.

In the paraxial application, one spatial variable is regarded as the evolution direction
and the above steady eikonal equation may be written as

05,8 — /2 — (0,,5)2 = 0,

or a variant of this, see e.g. [18]. This is again a ’'time-dependent’ HJ equation. From
the above weakly coupled systems we see that the multi-valued phase S can be computed
from the nonlinear HJ equations, independent of amplitude, and the amplitude is forced
to become multi-valued at points where the phase is multi-valued.

3. LEVEL SET EVOLUTION

Consider a general first-order nonlinear equation
(3.1) G(& u, Veu) =0,

where u € IR' is a scalar unknown and &€ € IR™ is the variable. Furthermore, G =
G(&,2,q), (€, 2,q) € IR*™! is a given function satisfying the nondegeneracy assumption

|VQG(€> Za Q)|27

which ensures that (3.1) is, in fact, a first-order equation.

In order to visualize the solution profile (single-valued or multi-valued), following [9],
we introduce a generic level set function ¢(€, z, ¢) in an extended space (¢, z,q) € IR
so that the solution z = u(&), and also its gradient Veu, stay on the zero level set

(€, 2,9) =0, z=u(), q=Veu(f).
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Since the equation (3.1) is a first order equation, its characteristics exist at least locally.
Let such characteristics be parameterized as (£, z,q) = (£, z,q)(7). The level set function
should be independent of the parameter 7. Therefore,

L o(e(r),2(r).4(r))

which gives the level set equation

0,

A-Vie.q0=0,

where A := (%, %, Z—Z) denotes the direction field of the characteristics. According to the

classical theory of characteristics for general differential equations of the first order, see
[7, pagel42-144], the vector field is obtained as

A =V,G, Ay=¢q-V,G, A3=-V:G—-q-0,G.
Thus our level set equation is
(3.2) V,G-Vep+q-V,GO,p — (VeG + q0,G) - Vo =0,

which as a linear equation serves to ‘unfold’” multi-valued quantities wherever they occur
in the physical space. The level set equation in such generality can be used to capture
wave fronts, and to recover the solution value u and the gradient of the solution when
desired.

Based on the general level set equation (3.2), we can write down the corresponding form
of the level set equation once the target PDE is given. Hyperbolic transport equations
and Hamilton-Jacobi equations are two prototypical examples in this category.

3.1. Transport equations. Consider the first-order time-dependent transport equation:
(3.3) o+ F(u,2,t) - Vou = B(u,z,t), z€IR", wuclR.
Take £ = (t,x) and ¢ = (po, p) with py = Qyu, p := V,u, and the equation (3.3) can be
rewritten as G = 0 where
G :=po+ F(z,z,t) - p— B(z,z,t), z=u.
A simple calculation gives
V,G-Vep =00+ F(z,2,t) - Vo

and

q-VeGo. = (1,F)-(po,p) = po+ F-p= Bz z,t)¢.,

where we have used the fact G = py + F' - p — B = 0. The level set equation (3.2) in this
setting reduces to

Note that the transport speeds in the z and z-directions do not explicitly depend on

(po,p). Therefore, the level set function will not depend on g = (pog, p) if it does not do
so initially. Thus, the effective level set equation in the phase space (t,z, z) reads as

The solution u to (3.3) can be determined as the zero level set,
o(t,x,2) =0, z=u(xt).
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In this case, we only need one level set function ¢. Here the level set ¢(t,z,u) = 0 can be
regarded as a complete integral to (3.4), which implicitly determines u, see [7, page 140].

3.2. Generalized Hamilton-Jacobi equations. Consider a generalized Hamilton-Jacobi
equation

(3.5) oS+ H(z,S,V,S)=0.
Taking ¢ = (t,x) and ¢ = (po,p) with po = 0,5, p = V.S, the equation (3.5) can be
rewritten as G = 0, where
G:=po+ H(x,z,p), z=25.

A straightforward calculation gives

0yG - Ve = 0,0+ V,H - V0,

q-V4GO.9 = (p-V,H — H)0.¢
and

VeG +q-0.G=(0,V,H)+ (po,p)H. = (—HH.,V,H + pH.),

where we have used py = —H(z,z,p). The level set equation in the full phase space
(x, z,p, po) thus becomes

09+ V,H -Vyp+(p-V,H—-H)0.¢— (V. H+pH,)V,0+ HH,0,,¢ = 0.
The effective level set equation for (3.5), when capturing py = 9,5 is not a goal, yields
(36) ath + VPH : Vx¢ + (p ' VPH - H)az¢ - (VxH —i—sz)qub = Oa

where ¢ := ¢(t,z, z,p) is well defined in the space (z,z,p) € IR for fixed t. We need
n + 1 independent level set functions in this case. Their common zero level set captures
the desired solution in phase space.

If the Hamiltonian H does not depend explicitly on S, i.e., H, = 0, (3.6) will lead to
the level set equation

(3.7) O+ Vo H - Vod+ (p- Vo H — H)0,¢ — Vo HV y¢p = 0.

Note that when H does not depend on z explicitly, the level set function ¢ will be inde-
pendent of z, if it is chosen so initially. Therefore, if one just wants to capture the wave
front or resolve the gradient of S, the effective level set equation reduces to

0+ V,H - Vo — Vo H -V, = 0.

This is the well-known Liouville equation (1.2), see [9]. In this case, n independent level
set functions are needed.

4. COMPUTATION OF MULTI-VALUED SOLUTIONS

The level set method has proven to be a powerful tool for capturing the dynamic
evolution of surfaces, see [26, 27]. This section is devoted to the computation of multi-
valued solutions for several equations based on the level set equation introduced in §2. We
will study how many level set functions are needed to determine the desired quantities,
and how to choose initial data to generate these level set functions.
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4.1. Hyperbolic Transport equations. Consider (3.3) with initial data w(z,0) =
uo(z). The solution z = u(x,t) can be represented as the zero level set of

o(t,x,2) =0, z=u(zt).

Since u is a scalar, one level set function suffices to uniquely determine u. Thus the level
set function solves (3.4), i.e.,

o+ F -V,0+ Bo,¢p =0,
and the initial data can simply be chosen as
60,2, 2) = z — up(x),

or alternatively the signed distance to the surface z = wg(x) in the case of nonsmooth
data.

4.2. Hamilton-Jacobi equations. Consider the Hamilton-Jacobi equation (3.5) subject
to the initial data

(4.1) S(x,0) = Sy(z), =z e€IR™

The solution S is evolved as the zero level set of ¢ = ¢(t, x, z,p) with z =5, p=V,S,
while ¢ solves the level set equation (3.6), i.e.,

ath + VPH : Vx¢ + (p ' VPH - H)az¢ - (VxH +sz)vp¢ =0.

Since (p, z) € IR™™, we need (n + 1) level set functions ¢;(t,z,z,p)(i = 1---n + 1) to

uniquely determine z = S. As a by-product, the multi-valued p = V.S will also be
determined in this procedure. These functions are solutions to (3.6). The corresponding
initial data can be simply chosen as

(42) ¢1(0,l’, Z>p) =Zz= SO(x)a
(4.3) ¢i(0,2,2,p) = pi — 0y, So(x), i=2---n+1.

Again for nonsmooth data, we need to use instead the signed distance function to the
surfaces z = Sy(z) or p = V.S (z).

5. NUMERICAL TESTS

The level set equation for first order time-dependent PDEs takes the form
(5.1) Op+ A(X) Vxo=0,

with X = (x,z,p) being the variable in the extended phase space and the coefficient
ff(X ) depending on the phase variable X. We apply variants of the numerical algorithm
developed in [9] to (5.1) to capture possible multi-valued solutions of the original nonlinear
PDEs.

We conclude the paper with a number of numerical examples. We present mainly 1D
examples, consult [9, 22] for 2D examples for HJ equations.
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5.1. One dimensional transport equations. Consider the scalar transport equation
Ou+ 0, f(u) = —v'(x), z€IR

subject to the initial data u(x,0) = ug(z). Usually of interest is the viscosity solution
of this PDE satisyfing the entropy condition. However, we are interested here in the
calculation of multi-valued solutions. Our level set approach, in this case, realizes this
type of solution as the zero level set

o(t,x,2) =0, z=u(x,t)
evolving with the level set function ¢ under the transport equation
Op + f'(2)0:¢ — V'(2)0.0 = 0.

Initial data for this equation is chosen to satisfy z = ug(z), and thus one common choice
is

¢o(x) = 2z — up(x).
Example 1 - Inviscid Burgers’ equation
Consider the inviscid Burgers’ equation

2

with smooth periodic initial data
uo(z) = 0.5 + sin(z).

The solution of this PDE is well-analyzed, and we know that it develops a singularity at
the critical time 7, = 1 and spatial location x = (2k 4+ 1)m + 0.5, for each k € Z.
The PDE for evolution of ¢ takes the form

8tq5 -+ Zam(b = 0,

with initial data
¢o(z) = z — (0.5 4 sin(x)).

Figure 1 shows the behavior of the multi-valued solution computed using our algorithm.
The zero level sets of ¢ are plotted in the same graph, with x from —7 to 7, at equal time
intervals up to time 2. Notice we are able to capture the overturning of the function at
the correct location x = —m 4 0.5. This overturning is a shock in the standard viscosity
solution.
Example 2 - Nonconvex flux:

Consider the Riemann problem

O+ 0, W mRICy “ﬂ 0

4

with discontinuous initial data
2, x<0
uo(w) = -2, z>0.

Thus the initial data has a shock at £ = 0 which overturns at later time.
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1k

2L

-3 L L L I I
-3 -2 -1 0 1 2 3

FIGURE 1. Our approach capturing a sine function overturning to become
multi-valued.

S =

-3 L L L I I
-3 -2 -1 [ 1 2 3

FIGURE 2. Our approach applied to a Riemann problem that produces
multi-valued solutions.

In this case, the level set evolution equation takes the form

D+ - (z2 - g) Doh = 0,

and we choose ¢g(x) to be the signed distance function associated to the graph of ug(x),
due to the discontinuity. Figure 2 shows the multi-valued solution associated to this
problem. We plot in the same graph the time evolution, in equal time intervals, of the
initial function using our algorithm. Overturning is clearly seen and there are up to 5
values of the function at a given x. Our approach is able to capture all of the multi-valued

phenomena.

5.2. One dimensional Hamilton-Jacobi equations. Consider the Hamilton-Jacobi

equation
1
OS + 5|ax5|2 + V(z) =0,
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F1GURE 3. Our approach for free motion on an initial parabola. No singu-
larities appear in this example.

where V() is a function called the potential. Furthermore, let Sy(x) be the initial data for
S. This specific set of equations arises as the semiclassical limit of the linear Schrodinger
equation, where S denotes the phase (see, e.g., [9, 21, 30]).

Example 3 - Free motion V =0

In the case of free motion, where V' = 0, the Hamilton-Jacobi equation reduces to

1
0S5 + 510.5* = 0.

In our level set approach, we introduce the two component vector valued level set function
¢ = ¢(t, z, z,p), which satisfies the equation for motion,

2
0w+ p0us + 0.6 = 0.
Furthermore, we can in many cases take as initial data for ¢,

$1(0) = 2z — So(x), ¢2(0) = p — 0,50(x),

where ¢; and ¢ denote the first and second components of ¢, respectively.
The specific cases we consider are:

(1) Case - No caustic
So(z) =%, z€IR.

2
In this case, the solution S remains smooth for all time, taking the form

LL’2

2(t+1)

Figure 3 shows the results of our algorithm in xz-space, projecting away p, on
this problem. The initial parabola flattens out as time increases but no multi-
valuedness occurs.

S(z,t) =
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0.8r
0.6
04r

0.2r

1 . . . . . . . )
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 4. Our approach showing focusing on an initial inverted parabola.
A singularity forms at the critical time but before and afterwards, the so-
lution is not multi-valued.

Case - Focusing at a point
So(x) = —%, z € IR.

In this case, all rays intersect at the focus point (z,7,.) = (0, 1), and then spread
out afterwards. Thus almost everywhere in space, there is a single-valued phase,

taking the form

LL’2

2(t—1)

Figure 4 shows our projected results in xz-space for this example. The initially
inverted parabola becomes thinner and thinner, eventually flipping over to parabo-
las lying above the z-axis and expanding. Some of the parabolas are “cut off” in
the graph due to the finite z-direction of the domain used in our computations.
Case - Caustic

S(x,t) =

So(x) = —1In(cosh(x)), z € IR.

In this case, a singularity appears at time 1 and located at x = 0. After this
time and from this location, a multi-valued phase appears. Figure 5 shows the
behavior of the solution obtained from our algorithm plotted at equal time intervals
up to time 1.5. The shrinking solutions develop a swallow-tail singularity after the
critical time T, = 1 at z = 0. A zoom of specifically this multi-valuedness between
time 1 and 1.5 are also shown in the figure. These results fit with the analysis of
the PDE.

Example 4 - Harmonic oscillator V(z) = 2%/2
For general V' (z), the level set evolution equation takes the form
2

0+ 0.0+ (= V(0)) 0.0 0.V (0,0 =0,
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FIGURE 5. Our approach capturing caustics, with a swallow-tail multi-
valuedness developing at the critical time. The figure on the right is a
zoomed picture around the singularity of the solutions at and after the
critical time.

and the initial data can in many cases be taken as

$1(0) = z — So(z), ¢2(0) = p — 0x5().
For V(x) = z%/2 and Sy(z) = z (see [30]), rays will intersect at the focal points
(2,1 = (=), 2207) e Z,
The solution in fact is explicitly given as
S(w,t) = —3(2? + 1) tan(t) + 2, ¢ # ZT

Figure 6 shows our results, plotted in xz-space, for this problem. The initial line
z = x first focuses at * = 1 and then subsequently at x = —1, at each time
developing multi-valuedness after the focusing. This oscillation continues since
the singularties form periodic in time. Though there are once again “cut offs” due

to the computational domain used, we are still able to capture the multi-valued
solution throughout the focusing effects.
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