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Abstract

Geometric optics makes its impact both in mathematics and real
world applications related to ray tracing, migration, and tomography.
Of special importance in these problems are the wavefronts, or points
of constant traveltime away from sources, in the medium. Previously in
[25], we initiated a level set approach for the construction of wavefronts
in isotropic media that handled the two major algorithmic issues of
resolution and multivalued solutions. This approach was quite general
and we were able to construct wavefronts in the presence of refraction,
reflection, higher dimensions, and, in [28], anisotropy as well. However,
the technique proposed for handling reflections of waves off objects, an
important phenomenon involved in all applications of geometric optics,
was inefficient and unwieldy to the point of being unusable, especially
in the presence of multiple reflections. We introduce here an approach
based on the foundation presented in [25] that fixes this issue. This
reworking fully allows the level set method to be considered for realistic
applications involving geometric optics.
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1 Introduction

Geometric optics consists of an approximation to high frequency wave propa-
gation that reduces the wave equation to a static Hamilton-Jacobi equation,
the eikonal equation, for the phase, or traveltime, and transport equations
for the amplitude. These two quantities, phase and amplitude, compose the
singular parts of the wave field and the geometric optics setting provides
a simplified framework for characterizing them. Thus this approximation
is fundamentally applied to numerous applications such as modern seismic
data processing (see, e.g., [8, 9, 13, 14, 33]). The alternative and equivalent
description of ray tracing is also widely seen and used (see, e.g., [23]).

One quantity of interest with respect to the traveltime is the wavefront.
These are simply points of constant traveltime away from the sources of
the waves. Thus many numerical approaches seek to construct wavefronts
and hence can piece together the traveltime if so desired. These approaches
will often use instead a time dependent eikonal equation whose solution at
time ¢ contains the wavefront of traveltime ¢ away from the sources. Our
interest and emphasis will mainly be on the construction of wavefronts in
a time dependent setting for isotropic wave propagations. Note in isotropic
media, the ray directions considered in ray tracing are equal to the local
phase directions and are orthogonal to the wavefronts.

The main difficulty encountered by all numerical approaches in the con-
struction of wavefronts in the geometric optics or ray tracing setting lies in a
choice of either resolution or generation of multivalued solutions. Multival-
uedness in wavefronts occur when wavefronts cross and more than one ray
occupies a point in space. The formation of the well known phenomenon of
caustics originates from this. Solutions obtained following the Lagrangian
representation of ray tracing, which involves using the method of character-
istics to track the position and ray direction of points on the wavefronts,
can automatically produce multivalued wavefronts but have difficulties in
resolving wavefronts in general, especially when they are diverging. On the
other hand, Eulerian approaches applied to the eikonal equation automat-
ically resolve all wavefronts over an underlying uniform grid in space but
encounter difficulties in generating multivalued wavefronts. Much work has
been devoted to bypassing these difficulties and the work of [34, 35, 36], for
Lagrangian approaches, and [1, 5, 6, 7, 10, 16, 17, 18, 19, 20, 25, 29, 32] for
Eulerian approaches, can be consulted with respect to this.

However, it was pointed out in [18] that by viewing wavefronts in phase
space instead of spatial space, both difficulties could be avoided at the cost
of operating on higher codimensional obejcts in a higher dimensional space.



Phase space consists of the set of (z,p), where z € R", p € R". Here, z
represents the point in space and p the local phase direction. A traveltime
t wavefront can be represented in this space as the set of bicharacteristic
strips, which form a Lagrangian submanifold of codimension n and hence
are smooth (see, e.g., [3, 4, 15, 21]). Thus operating on bicharacteristic
strips has the advantage of operating with a smooth manifold, regardless of
whether the projection to spatial space, which gives back the wavefronts, is
multivalued or not. Furthermore, an Eulerian approach to the construction
of these bicharacteristic strips set in phase space would nicely resolve them
and hence the wavefronts down in spatial space. In more detail, the time
dependent eikonal equation is replaced by the Liouville equation for this
construction. In addition, for two dimensional geometric optics, phase space
can be reduced to involve just the phase angle rather than the local phase
direction. In [18], the Eulerian approach that was used involved representing
bicharacteristic strips with the segment projection method, leading to a fast
and efficient algorithm for the construction of wavefronts.

2 Level Set Formulation

In [25], we followed the lead of [18], operating on bicharacteristic strips, but
used instead the level set method [26] for the Eulerian framework in phase
space. The advantage in this was especially in simplicity. This allowed the
algorithm to handle complicated wavefront evolutions without additional
effort and furthermore nicely generalized to higher dimensions. The level
set approach involves representing the higher codimensional bicharacteristic
strips at time ¢ by the zero level set at that time of a vector valued time
dependent level set function existing in phase space. The Liouville equation
on each component, written as

ug +v-Vypu =0,

where v is such a component and v comes from the ray tracing directions
or, equivalently, the characteristics of the eikonal equation, can then be
used to generate the bicharacteristic strips and, ultimately, the wavefronts
of interest. It will be useful to note that for two dimensional geometric
optics, where we can operate in reduced phase space, the two components,
¢ and 1), of the vector valued level set function satisfy the system

bt +v-Viepp = 0,
¢t+v'vx,9¢ = 03



where 6 denotes the phase angle, v is given by

c(z) cos 6
v(z,0) = c(x) sin@ ,
Cz, () sin@ — cg, (z) cos @

and ¢ > 0 is the given local wave velocity permitted in the medium. Also
note these two transport equations in ¢ and v can be solved separately. As
the quantites of interest are now redefined into phase space, or the reduced
version, a fixed, uniform grid can be placed there over which we can obtain
numerical solutions. This grid provides the automatic resolution desired.
Thus the steps of the algorithm for constructing the traveltime t wave-
front involve producing the vector valued level set function that corresponds
to the given initial wavefront, solving the Liouville partial differential equa-
tions (PDE’s) up to time ¢, and outputting the projection of the zero level
set to spatial space. Herein lies the simplicity of the approach. We note that
additional steps are usually taken during the solving step of the PDE’s in a
process called reinitialization to enforce a stable form for the vector valued
level set function. This, though, is not needed for a medium of constant in-
dex of refraction, i.e., when c is constant. We refer to [25] for details of this
and the algorithm in general as we are concerned here with other aspects.

3 Reflections

In fact, our interest lies in the case where there are objects in the medium
that can reflect wavefronts. Reflection was considered in [25] as well but
the approach introduced there could become unreasonably inefficient when
multiple reflections occur. This is because the approach consists of creating
more vector valued level set functions to represent wavefronts each time they
are reflected. Further details include interface boundary conditions on the
object surface to enforce Newton’s law of reflection. Nevertheless, dealing
with all these level set functions, which can add up without bound, can be
unwieldy. This is a major drawback as reflections of waves occur all the time
in the real world and serve an important purpose in numerous applications
such as ray tracing and scattering (see, e.g., [11]). Thus, our goal here
is, building upon the established level set framework for geometric optics,
to introduce and implement a technique that handles reflections in a more
realistic and efficient way.

We consider the model problem where the objects are given and no
waves can exist in their interiors. This time, our approach is to use one



vector valued level set function to represent all wavefronts, reflected or not.
The reflecting objects, which can be given in spatial space through a level
set function p(z) as {p < 0}, are extended to phase space and represented
by {p < 0}, where p(z,p) = p(z). We can in fact require that p and p are
distance functions with respect to their zero level sets in their respective
spaces. Furthermore, we will frequently refer to both {§ = 0} in spatial
space and {p = 0} in phase space, or reduced phase space, as object bound-
aries. Away from the objects, wavefront evolution is as before, satisfying the
relevant Liouville equations. The interesting behavior happens, of course,
near the objects. At the boundary, we wish to pose boundary conditions
that will enforce reflection.

For simplicity, we first consider the case of geometric optics in two dimen-
sions in a medium of constant index of refraction and discuss generalizations
later. This means the Liouville PDE’s take the abbreviated form

¢t + (ccos @)py, + (csinb)p,, = 0,
Py + (ccos @)y, + (csinB)p,, = 0,

and derivatives in the #-direction are absent. We will use a formula that
relates an incoming ray that strikes the object to the subsequent reflected
ray. Let 01 be the angle of the ray that strikes the object. Also let 5 denote
the outward normal of the object boundaries, which are curves, at the point
of striking. Then the angle, going counterclockwise, from the incoming ray
to the normal at the interface, denoted by Sy, is equal to g — 6. Newton’s
law for reflection says that if Sr furthermore denotes the angle from the
reflected ray to the normal at the interface, then f; = m — fg. Thus we
get that Bg should equal to m — (g — 07). In terms of the angle 0 of the
reflected ray, we have fr = 0p — 0r and so g = 20 — 0; — w. Note this
condition was also used in [25] to link together the different vector valued
level set functions.

To use this in our level set framework, we notice that since we are con-
sidering isotropic media, the values of 6 on bicharacteristic strips give the
angles of the normals to the corresponding wavefronts, which are exactly
the angles of the ray directions. According to our analysis, given x in spa-
tial space lying on the object boundaries and any 6, the value of our vector
valued level set function at (x,6) for any time ¢ should equal to the value at
(z,20p — 0 — ), where 0p is the angle of the normal of the object bound-
aries at z. Note that one of these points has an incoming ray, in terms
of the characteristics of the Liouville PDE’s, and the other has a reflected
ray. The one with the incoming ray will get its value from the Liouville



PDE, which should then be copied to the other point to enforce reflection.
Thus especially, if the bicharacteristic strips of interest, which are a part
of the vector valued level set function, hit the object boundaries, reflected
bicharacteristic strips will be created in the function moving in the correct
direction and manner. We will later write down a criterion for determin-
ing which points get their information from incoming rays, i.e., from the
Liouville PDE, and which from reflected rays, i.e., from reflection boundary
conditions. So the evolution step of the algorithm consists of solving the
Liouville PDE’s in the region in reduced phase space exterior to the ob-
jects, i.e., {p > 0}, which we term the computational region, with the above
serving as boundary conditions on the object boundaries, i.e., {p = 0}.

4 Numerical Discretization

In the implementation of this approach, since we are building upon the
framework of [25], we employ the same numerical setting. Thus, we operate
on a uniform grid in three dimensional reduced phase space. As mentioned
before, this grid, along with the properties of self interpolation afforded by
a PDE approach, allows for automatic resolution of wavefronts.

Before we consider the technique for numerically solving the relevant
Liouville PDE’s, we first clarify some points and present the discretization
of certain basic quantities that will be used later. First, an initial vector
valued level set function is chosen that not only represents the initial given
wavefronts but also satisfies the boundary conditions on the object bound-
aries. These boundary conditions will be preserved under the evolution of
the level set function. For the second point, we note that the computation of
the quantity 65 can be determined from the well known formula for normals

in a level set framework, |g—g|, giving

0p = arctan @
Py
The actual value for this expression can be computed through finite differ-
encing for the derivatives and interpolation over the grid. Note also that
the formula for normals, and thus also fg, exists at all points x in space. In
fact, this expression produces the normal of the particular level set surface
passing through the point z. Finally, the location of the object boundaries
can be accurately computed through interpolation to find the zeros of p and
the interior and exterior of the objects are determined by the sign of p.



This leads us to the discretization of the Liouville PDE’s to arrive at the
vector valued level set function at a desired time. The spatial discretiza-
tion involved needs to adapt the correct boundary conditions at the object
boundaries. The time discretization, however, may be the same everywhere
and Total Variation Diminishing Runge-Kutta methods [30] (TVD-RK), or
even Strong Stability Preserving Runge-Kutta methods [31] (SSP-RK), of
high order can be used. In our simulations, we simply employ Forward Euler
since our current spatial discretization, which is discussed below, is first or-
der accurate anyway. For the spatial discretization in reduced phase space,
away from object boundaries, we may use high order upwind methods such
as Essentially Non Oscillatory [30] (ENO) and Weighted Essentially Non
Oscillatory [22] (WENO) schemes, as in [25]. However, since we will, for
simplicity, be modifying first order upwinding near the object boundaries,
we use first order upwinding away from object boundaries as well. Though
this only allows first order accuracy, the advantage is in simplicity and fast
computations. We do note that we are currently working on achieving higher
order accuracy.

For grid points next to object boundaries, first order upwinding is at-
tempted but needs to be modified according to the availability of informa-
tion. We illustrate the discretization in an example with a one dimensional
spatial space [0,00) with a reflecting wall occupying [0, a], for some a > 0.
Notice there can only be two phase angles, § = 0, 7. Given a uniform grid
over spatial space denoted by the collection of 0 = xp < 71 < z2 < ...
with stepsize Az, the grid over reduced phase space consists of (x;,0;),
1=0,1,2,... and 5 = 0,1, where #; = 0 and 6 = 7. This is a slight abuse
of notation as z; was previously used to denote coordinates of a spatial point
x, however, there is no confusion for this example. Let xj denote the grid
point in spatial space closest to but greater than a and suppose z; # a.
Thus there exists 0 < p < 1 such that zp — a = pAz. See Figures 1 and 2
for clarification. We start with a function ug defined in reduced phase space
in the computational region, € (a,o0), and consider the model equation

ut + (ccos@)u, =0,

with v = ug at ¢ = 0. Thus the function will travel to the left for 8 = =«
and when it hits the wall, it will reflect, reappearing at § = 0 and moving
to the right. Note u and the model equation take the place of ¢ or ¢ and
its corresponding Liouville equation.

As we mentioned before, at grid points away from a, first order upwind-
ing can be applied without problems to the discretization of u,. However,
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Figure 1: This diagram shows the 8 = 7 slice and labels the reflecting wall,
ray direction, and grid points near the wall.
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Figure 2: This diagram shows the 6 = 0 slice with grid points and ray
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at zj, care must be taken since z;_; is in the interior of the reflecting wall
and thus v has no real value there. The value at z;_1, though, is possibly
not used depending on the what the correct upwinding direction is. Note,
at 0 = m, first order upwinding uses u(zg, 7,t) and u(xgyq, 7, t), which are
defined. However, at 8 = 0, first order upwinding over the grid attempts
to use u(xg,0,t) and, unfortunately, u(zx—1,0,%¢). In this case, instead of
u(zg_1,0,t), we can use u(a,0,t), which should be derivable from the re-
flection boundary condition. In an alternate description, this is because for
0 = m, the ray at zj, and also a, is an incoming ray and so information
passed from the region should be used. But for § = 0, the rays at x; and
a come from reflected rays and so information passed from the boundary
should be used. Note at a, p = 0 and so, as expected, an incoming ray
with angle 7 reflects to the angle —27, which is the same as 0. Thus u(a, 0, t)
can be obtained from the value of v at + = a and 6 = w. This information
is provided by the incoming ray from within the region. The value of u at
this boundary location can be obtained from extrapolation on the values
at the nearby points (z, ) and (zg41,7). Then u at 6 = 0 can use this
information.

A final note in this example is in terms of efficiency. If u, at § = 0
and x = gz is discretized using first order upwind differencing and the
information at a, the resulting algorithm will be restricted by the stability

condition At < &27‘76 when using Forward Euler in time, where At denotes
the time step. This can be unduly restrictive if y is small. Thus we modify
the approach so that when p > %, we keep this discretization, but when

w< %, we skip z; and compute u at x5, with a first order upwind method
using x4 and the point on the wall, a, which are separated by more than
Az. Then if a value for u is actually wanted at zj, it can be computed
from interpolation or extrapolation once the value of u has been determined
elsewhere, for example, from the values at z;,1 and a. The CFL condition

is thus At < éf, which does not depend on x4 and is not overly stringent.
For two dimensional spatial space, we follow the same philosophy. For
grid points next to the object boundaries, if first order upwind differencing
does not involve differencing across the object boundaries, then this approx-
imation is used since the information at that point comes from an incoming
ray. On the other hand, at grid points where differencing is attempted across
the object boundaries, boundary points are used instead in the approxima-
tion, as in the one dimensional case. However, in this case, the boundary
points involved may get their values from incoming rays rather than only
from the reflection boundary condition (see Figure 3). We may use the di-
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Figure 3: This diagram shows a slice in reduced phase space of a grid point
of interest surrounded by its spatial neighbors. The phase angle of the slice
is shown as a ray direction. First order upwinding at this point will attempt
to use values at the neighboring points to the left and above it, even though
the ray here is an incoming ray and the point above the point of interest is
within the reflecting wall to the right.

rection of the outward normal vector, Vp, and the ray direction considered,
which has angle 6, at the point to determine where it gets its value. The
condition to check is whether at the point,

Pz, €080 + Py, SIn 6,

the dot product between the ray and normal directions, is greater than or
less than zero. If it is less than zero, then the ray there is an incoming ray.
Thus, the value can be gathered through extrapolation involving nearby
grid points. If the above is greater than zero, however, then the value at
the point should come from the reflection boundary conditions, i.e., from
the value of the boundary point at the same spatial location but with phase
angle 20p — 0 — m which has an incoming ray and thus a determined value.
A final detail is when searching for the correct angle of the incoming ray
that will prescribe the reflection boundary condition at an object boundary
point, this angle may not be one of the discrete values for the phase angle
taken in the grid. This means even if 6 is a discrete value of the phase
angle of the grid, 20p — 6 — m may not be. In this case, interpolation can
be used with nearby angles available in the grid to fill in this information.
This forms the discretization we use for the Liouville PDE’s of our level set
functions.

With this, we can solve the Liouville PDE’s for ¢ and ¢ up to any
given time ¢. To obtain the traveltime ¢ wavefront, recalling our method of
representation, we may use interpolation techniques such as those related to
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[24] to obtain the intersection of the zero level sets of ¢ and . This gives
the bicharacteristic strips which can be projected to arrive at the wavefront
of interest. See [12] and [25] for more details on this.

5 Numerical Simulations

Currently, we have mainly applied our algorithm to the case of reflecting
walls at the spatial boundaries. Thus if we are working in the domain
[—1,1] x [-1,1] in spatial space, then the reflecting walls are located at
a choice of 1 = £1 and z9 = £1. This simplifies a lot of our previous
calculations. Figure 4 shows an expanding circle in a medium of index of
refraction 1 in such a setting with four reflecting walls using our algorithm.
As time increases, more and more reflections take place, leading to wave-
fronts that almost fill up spatial space. Note our approach not only handles
the multiple reflections, which lead to complicated multivalued solutions,
but resolves well the wavefronts which have grown tremendously in length.
Figure 5 shows the continuation of the previous simulation up to even larger
time. Multiple reflections, multivalued solutions, and resolution are taken
care of with ease. Figures 6,7, and 8 show the bicharacteristic strips in re-
duced phase space computed at different times. Notably, the simple curve
of Figure 6 shows the bicharacteristic strips that form the initial circle and
Figures 6 and 7 show them for wavefronts that have undergone more and
more reflections. Note though there are many curve segments in the pictures,
they are all smooth, even when their projection contains many intersections.
Also, the figures are plotted with the phase angle [—7, 7] mapped into [—1, 1]
for simplification. Finally, for illustration, we show the level set functions
involved in Figures 6, 7, and 8 in Figures 9, 10, and 11, respectively.

Figure 12 shows an initially small growing ellipse in a domain with a
single reflecting wall at z; = 1. The ellipse expands and reflects off the wall
while passing through the boundary at o = —1. Note a sharp reflection
wavefront is generated and resolved without problems.

Finally, Figure 13 considers a single reflecting wall at the left slanting
from top left to bottom right that does not align with the grid. The original
wavefront, moving downwards, is the horizontal straight line at the top,
linking up with the corresponding reflected line at the wall. These are
drawn into the reflecting wall but those portions can be ignored in the plot.
In this case, we performed a simplification as the incoming and reflected
wavefronts will always be straight lines with slopes preserved throughout
the evolution. Thus, we consider just two phase angles in reduced phase

11



0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5 \
-1 -1 -1
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time = 0.0 time = 0.25 time = 0.5
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time = 0.75 time = 1.0 time = 1.25
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time=1.5 time = 1.75 time = 2.0

Figure 4: This figure shows an initially growing circular wavefront that
subsequently reflects multiple times off four walls forming a box.

space, the ones corresponding to the incoming and reflected wavefronts.
Furthermore, we just need one level set function and plot the projection into
spatial space of the zero level sets at each of the two phase angles to arrive at
the wavefronts of interest. As seen from the figure, our algorithm is able to
capture these wavefronts as they evolve and reflect. This example still serves
as a verification of our approach even though it has been simplified since
many of fundamental elements, such as the discretization of the Liouville
PDE, are preserved in the simplification.

We are currently working on simulations involving more complicated
object boundaries in a general setting. However, the ones we have so far
already show a vast improvement over the previous approach found in [25].
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0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time =2.25 time =2.5 time = 2.75
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time = 3.0 time = 3.25 time = 3.5
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 0 1 -1 0 1
time = 3.75 time = 4.0 time = 4.25

Figure 5: This figure continues that of Figure 4, showing even more reflec-
tions with a final wavefront taking up much of the computational region.
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Figure 6: This figure shows the bicharacteristic strips in reduced phase space
associated to the initial circular wavefront.

6 Generalizations

We would of course like to generalize our approach to anisotropic wave
propagations, which was handled under a level set approach in [28], as well as
variable indices of refraction, and three dimensional spatial space. Variable
index of refraction would not seem to present too many problems since this
would only include the term with the #-derivative in the Liouville equations.
These derivatives should not be hard to discretize since the interior and
exterior of the objects are determined by the spatial location only. Some
details need to be handled with respect to reinitialization though and we
plan to discuss this in future work.

As for three dimensional spatial space, in [25], we wrote down a relation-
ship between incoming rays and reflected rays, namely that

(B-A)A

=-B+4+2—F—
C + AP

where A is the normal vector to the interface at the point of reflection, B is
the incoming ray, and C is the reflected ray. Incorporating this would form
the first steps for an algorithm for three dimensions. Care, however, would
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Figure 7: This figure shows the bicharacteristic strips in reduced phase space
associated to the initial circular wavefront at a later time, after reflections
have occurred.
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Figure 8: This figure shows the bicharacteristic strips in reduced phase
space associated to the initial circular wavefront at a later time. Note the
bicharacteristic strips are smooth even after the multiple reflections involved.

z-axis

X-axis

y-axis

Figure 9: This figure shows the zero level sets of the two components of the
vector valued level set function involved in Figure 6. The intersection of the
two surfaces gives the bicharacteristic strips.
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Figure 10: This figure shows the zero level sets of the two components of
the vector valued level set function involved in Figure 7.

z-axis

X-axis
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Figure 11: This figure shows the zero level sets of the two components of
the vector valued level set function involved in Figure 8.
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Figure 12: This figure shows an initially small growing ellipse reflecting off
a wall at z; = 1.
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Figure 13: This figure shows an initial downward moving horizontal wave-
front with the corresponding reflected portion in a medium with a slanted
reflecting wall not aligned with the grid.

need to be taken in terms of efficiency, possibly with local level set methods
(see, e.g., [2, 12, 25, 27]), since phase space in this case is six dimensional.

7 Conclusion

Building upon the setting of [25], we were able to introduce an approach that
can handle reflections of waves in a reasonable and efficient manner while
preserving the benefits afforded by the previous work, notably with respect
to resolution and multivalued solutions. This is a great improvement over
the previous attempt found in [25] and is needed if realistic cases of wave
propagation are to be considered. We are currently working on further gen-
eralizing our algorithm to handle anisotropy, variable indices of refraction,
and a three dimensional spatial space.
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